Cursor Pro Limits MCP Server

Cursor Pro Limits MCP Server

Enables real-time monitoring of Cursor Pro usage limits and API quotas across different AI services. Tracks Sonnet 4.5, Gemini, and GPT-5 request usage with alerts when approaching subscription limits.

Category
Visit Server

README

Cursor Pro Limits MCP Server

A Model Context Protocol (MCP) server for monitoring Cursor Pro usage limits and API quotas. This server helps you track your daily usage across different AI services and stay within your Cursor Pro limits.

Features

  • 📊 Real-time Usage Monitoring: Track Sonnet 4.5, Gemini, and GPT-5 request usage
  • 🚨 Alert System: Get warnings when approaching limits
  • 📈 Usage Statistics: Detailed breakdown of current usage vs. limits
  • 🔧 Easy Integration: Works with any MCP-compatible client
  • 🎯 TypeScript: Fully typed with strict TypeScript configuration

Cursor Pro Limits (Monthly)

Based on Cursor Pro subscription limits:

Pro Tier

  • Sonnet 4.5: 225 requests/month
  • Gemini: 550 requests/month
  • GPT-5: 500 requests/month
  • Total: 1,275 requests/month

Pro+ Tier

  • Sonnet 4.5: 675 requests/month
  • Gemini: 1,650 requests/month
  • GPT-5: 1,500 requests/month
  • Total: 3,825 requests/month

Ultra Tier

  • Sonnet 4.5: 4,500 requests/month
  • Gemini: 11,000 requests/month
  • GPT-5: 10,000 requests/month
  • Total: 25,500 requests/month

Installation

npm install cursor-pro-limits-mcp

Usage

As an MCP Server

  1. Configure your MCP client to use this server:
{
  "mcpServers": {
    "cursor-pro-limits": {
      "command": "npx",
      "args": ["cursor-pro-limits-mcp"]
    }
  }
}
  1. Available Tools:

get_usage_stats

Get comprehensive usage statistics for all services.

// Returns current usage, limits, percentages, and remaining requests

get_service_usage

Get detailed usage for a specific service.

Parameters:

  • service: "sonnet45" | "gemini" | "gpt5" | "total"

check_alerts

Check for services approaching or exceeding limits.

update_usage

Update usage statistics (for testing or manual updates).

Parameters:

  • sonnet45Requests (optional): Number of Sonnet 4.5 requests
  • geminiRequests (optional): Number of Gemini requests
  • gpt5Requests (optional): Number of GPT-5 requests
  • totalRequests (optional): Total number of requests

set_subscription_tier

Set the subscription tier (pro, pro-plus, ultra).

Parameters:

  • tier: Subscription tier ("pro", "pro-plus", or "ultra")

get_subscription_info

Get current subscription tier and limits information.

Programmatic Usage

import { CursorLimitsMonitor } from 'cursor-pro-limits-mcp';

// Create monitor for Pro tier (default)
const monitor = new CursorLimitsMonitor('pro');

// Get current usage stats
const stats = monitor.getUsageStats();
console.log(`Sonnet 4.5: ${stats.limits.sonnet45Requests}/${stats.quotas.maxSonnet45Requests}`);

// Check for alerts
const alerts = monitor.checkAlerts();
if (alerts.length > 0) {
  console.log('Warning: Approaching limits!');
}

// Update usage (e.g., from API response)
monitor.updateLimits({
  sonnet45Requests: 150,
  geminiRequests: 300,
  gpt5Requests: 200,
  totalRequests: 650
});

// Switch to Pro+ tier for higher limits
monitor.updateTier('pro-plus');
console.log(`Switched to ${monitor.getCurrentTier()} tier`);

Development

Prerequisites

  • Node.js 18.0.0 or higher
  • npm or yarn

Setup

# Clone the repository
git clone <repository-url>
cd cursor-pro-limits-mcp

# Install dependencies
npm install

# Build the project
npm run build

Available Scripts

# Build TypeScript
npm run build

# Watch mode for development
npm run dev

# Start the server
npm start

# Lint code
npm run lint

# Fix linting issues
npm run lint:fix

# Format code
npm run format

# Check formatting
npm run format:check

# Clean build directory
npm run clean

Code Quality

This project uses:

  • TypeScript with strict configuration
  • ESLint for code linting
  • Prettier for code formatting
  • No any types - fully typed codebase

API Reference

Types

interface CursorProLimits {
  sonnet45Requests: number;
  geminiRequests: number;
  gpt5Requests: number;
  totalRequests: number;
  lastUpdated: Date;
}

interface UsageStats {
  limits: CursorProLimits;
  quotas: CursorProQuotas;
  usagePercentages: {
    sonnet45: number;
    gemini: number;
    gpt5: number;
    total: number;
  };
  remaining: {
    sonnet45: number;
    gemini: number;
    gpt5: number;
    total: number;
  };
}

Methods

CursorLimitsMonitor

  • getUsageStats(): Get comprehensive usage statistics
  • getServiceUsage(service): Get usage for specific service
  • checkAlerts(): Check for services approaching limits
  • updateLimits(limits): Update usage statistics
  • onUpdate(callback): Subscribe to usage updates

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes
  4. Run tests and linting: npm run lint && npm run format:check
  5. Commit your changes: git commit -m 'Add amazing feature'
  6. Push to the branch: git push origin feature/amazing-feature
  7. Open a Pull Request

License

MIT License - see LICENSE file for details.

Support

For issues and questions:

  • Open an issue on GitHub
  • Check the documentation
  • Review the TypeScript types for API reference

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured