CUA MCP Server
Enables autonomous desktop automation by delegating tasks to vision-based agents operating within cloud-based virtual machine sandboxes. It allows users to manage VMs, execute complex computer tasks, and receive text-based screen summaries across Linux, Windows, and macOS environments.
README
CUA MCP Server
An agentic Model Context Protocol (MCP) server for CUA Cloud - delegate desktop automation tasks to an autonomous vision-based agent. Images never leave the server; only text summaries are returned.
Production URL: https://cua-mcp-server.vercel.app/mcp
What is CUA?
CUA (Computer Use Agent) provides cloud-based virtual machine sandboxes that AI agents can control. This MCP server exposes CUA's capabilities through a clean task-delegation API:
- Create and manage VMs (Linux, Windows, macOS)
- Delegate tasks - "Open Chrome and navigate to google.com"
- Get text summaries - No images in your context window
- Query screen state - Vision-based descriptions without taking action
Architecture
Claude Code (Orchestrator)
│
│ run_task("Open Chrome and go to google.com")
▼
┌─────────────────────────────────────────────────────────────┐
│ CUA MCP Server (Agentic) │
│ ┌───────────────────────────────────────────────────────┐ │
│ │ Internal Agent Loop │ │
│ │ 1. screenshot() → CUA sandbox │ │
│ │ 2. screenshot → Claude API (computer_use tool) │ │
│ │ 3. Claude returns: click(x,y) / type("text") / done │ │
│ │ 4. Execute action on sandbox │ │
│ │ 5. Loop until complete │ │
│ └───────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
│
▼
{ success: true, summary: "Opened Chrome...", steps_taken: 5 }
(TEXT ONLY - no images)
Project Structure
api/mcp.ts # MCP protocol handler
lib/
├── agent/ # Modular agent architecture
│ ├── index.ts # Public exports
│ ├── types.ts # Type definitions
│ ├── config.ts # Model configurations
│ ├── validation.ts # Coordinate validation helpers
│ ├── execute.ts # Main agent loop
│ ├── describe.ts # Screen description
│ ├── progress.ts # Progress tracking
│ ├── utils.ts # Utilities (sleep, generateTaskId)
│ └── actions/ # Action handler registry (16 handlers)
├── cua-client.ts # CUA Cloud API client
└── tool-schemas.ts # MCP tool definitions
Available Tools (9 total)
Sandbox Management (5 tools)
| Tool | Description |
|---|---|
list_sandboxes |
List all CUA cloud sandboxes with their current status |
get_sandbox |
Get details of a specific sandbox including API URLs |
start_sandbox |
Start a stopped sandbox |
stop_sandbox |
Stop a running sandbox |
restart_sandbox |
Restart a sandbox |
Note: Create and delete sandboxes via the CUA Dashboard - the Cloud API doesn't expose these operations.
Agentic Tools (4 tools)
| Tool | Description |
|---|---|
describe_screen |
Get a text description of current screen state using vision AI. No actions taken. |
run_task |
Execute a computer task autonomously. Returns immediately with task_id for polling. |
get_task_progress |
Poll progress of running tasks. Returns current step, last action, and reasoning. |
get_task_history |
Retrieve results of a previously executed task by ID. |
Quick Start
1. Get a CUA API Key
- Go to cua.ai/signin
- Navigate to Dashboard > API Keys > New API Key
- Copy your API key (starts with
sk_cua-api01_...)
2. Configure Claude Code
Add to your ~/.claude.json:
{
"mcpServers": {
"cua": {
"command": "npx",
"args": ["-y", "mcp-remote", "https://cua-mcp-server.vercel.app/mcp"]
}
}
}
3. Use with Claude Code
You: "List my CUA sandboxes"
Claude: [Uses list_sandboxes tool]
You: "Start my-sandbox"
Claude: [Uses start_sandbox tool]
You: "Open Firefox and go to google.com on my-sandbox"
Claude: [Uses run_task with task="Open Firefox and navigate to google.com"]
→ Returns: { success: true, summary: "Opened Firefox, navigated to google.com", steps_taken: 4 }
You: "What's currently on the screen?"
Claude: [Uses describe_screen tool]
→ Returns: { description: "Firefox browser showing Google homepage with search box..." }
Usage Examples
Automate a Web Task
You: "On my-sandbox, open Chrome, go to github.com, and search for 'mcp server'"
Claude uses run_task:
- task: "Open Chrome browser, navigate to github.com, find the search box, type 'mcp server' and press Enter"
- Returns summary of what happened (no screenshots in your context)
Check Screen State
You: "What's on the screen right now?"
Claude uses describe_screen:
- focus: "ui" (or "text" or "full")
- Returns text description of UI elements, buttons, text content
Ask Specific Questions
You: "Is there a login button visible?"
Claude uses describe_screen:
- question: "Is there a login button visible?"
- Returns: "Yes, there is a blue 'Sign In' button in the top right corner..."
Self-Hosting
Prerequisites
- Vercel account with Pro plan (for 800s function timeout)
- Vercel Blob storage
- Anthropic API key
Deploy Your Own Instance
# Clone the repository
git clone https://github.com/anthropics/cua-mcp-server.git
cd cua-mcp-server
# Install dependencies
npm install
# Deploy to Vercel
vercel --prod
Environment Variables
| Variable | Description | Required |
|---|---|---|
CUA_API_KEY |
Your CUA Cloud API key | Yes |
ANTHROPIC_API_KEY |
Anthropic API key for vision processing | Yes |
BLOB_READ_WRITE_TOKEN |
Vercel Blob token (auto-added) | Yes |
CUA_API_BASE |
Custom API base URL (default: https://api.cua.ai) | No |
CUA_MODEL |
Model to use: claude-opus-4-5 (default) or claude-sonnet-4-5 |
No |
Setting Up Vercel Blob
- Go to your Vercel project dashboard
- Navigate to Storage → Create → Blob
- The
BLOB_READ_WRITE_TOKENwill be automatically added
Pass API Key Per-Request
If you don't want to store the CUA API key on the server:
{
"mcpServers": {
"cua": {
"command": "npx",
"args": [
"-y", "mcp-remote",
"https://your-deployment.vercel.app/mcp",
"--header", "X-CUA-API-Key: sk_cua-api01_your-key-here"
]
}
}
}
API Reference
MCP Endpoint
URL: POST /mcp
Content-Type: application/json
Example: Run Task
{
"jsonrpc": "2.0",
"method": "tools/call",
"id": 1,
"params": {
"name": "run_task",
"arguments": {
"sandbox_name": "s-linux-abc123",
"task": "Open Firefox and navigate to google.com",
"max_steps": 30,
"timeout_seconds": 120
}
}
}
Response:
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"content": [{
"type": "text",
"text": "{\"task_id\":\"task_123...\",\"success\":true,\"summary\":\"Opened Firefox, navigated to google.com\",\"steps_taken\":4,\"duration_ms\":8500}"
}]
}
}
Example: Describe Screen
{
"jsonrpc": "2.0",
"method": "tools/call",
"id": 2,
"params": {
"name": "describe_screen",
"arguments": {
"sandbox_name": "s-linux-abc123",
"focus": "ui",
"question": "Is there a search box visible?"
}
}
}
Model Support
| Model | Env Variable | Tool Version | Features |
|---|---|---|---|
| Claude Opus 4.5 (default) | CUA_MODEL=claude-opus-4-5 |
computer_20251124 |
Zoom support, higher accuracy |
| Claude Sonnet 4.5 | CUA_MODEL=claude-sonnet-4-5 |
computer_20250124 |
Faster, lower cost |
Supported Computer Actions
The agent can perform the following actions autonomously:
UI Actions:
screenshot- Capture current screenleft_click,right_click,double_click,triple_click,middle_click- Mouse clicks at coordinatesmouse_move- Move cursor to coordinatesleft_click_drag- Click and drag from start to end coordinatesleft_mouse_down,left_mouse_up- Press/release mouse buttonscroll- Scroll up/down/left/rightwait- Pause executionzoom- View specific screen region at full resolution (Opus 4.5 only, defaults to center if no coordinate)
Keyboard:
type- Type textkey- Press key or key combination (e.g., "ctrl+c")hold_key- Hold a modifier key down (auto-releases after next action)
Constraints
| Constraint | Value |
|---|---|
| Function timeout | 800 seconds (Vercel Pro) |
| Max steps per task | 100 |
| Default steps | 100 |
| Default timeout | 750 seconds |
| Task history TTL | 24 hours |
| Display resolution | Dynamic (default 1024x768) |
Sandbox Types
| OS | Size | CPU | RAM | Use Case |
|---|---|---|---|---|
| Linux | small | 2 | 4GB | Development, testing |
| Linux | medium | 4 | 8GB | Build tasks, CI/CD |
| Linux | large | 8 | 16GB | Heavy workloads |
| Windows | small | 2 | 4GB | Basic Windows apps |
| Windows | medium | 4 | 8GB | Office, development |
| Windows | large | 8 | 16GB | Enterprise apps |
| macOS | small | 2 | 4GB | iOS development |
| macOS | medium | 4 | 8GB | Xcode builds |
| macOS | large | 8 | 16GB | Heavy compilation |
Regions
north-america- US East (lowest latency for US users)europe- EU Westasia- Asia Pacific
Troubleshooting
"CUA API key required"
Set CUA_API_KEY environment variable in Vercel or pass via X-CUA-API-Key header.
"ANTHROPIC_API_KEY not configured"
The server needs an Anthropic API key for vision processing. Add it to your Vercel environment variables.
Task times out
- Default timeout is 750 seconds
- Reduce task complexity or break into smaller steps
- Check if sandbox is responsive with
describe_screen
Task exceeds max steps
- Default is 100 steps (max 100)
- Break complex tasks into smaller subtasks
- Use more specific task descriptions
Resources
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.