CSV Editor
Comprehensive CSV processing MCP server with 40+ operations for data manipulation, analysis, and validation. Features auto-save, undo/redo, and handles GB+ files
README
CSV Editor - AI-Powered CSV Processing via MCP
Transform how AI assistants work with CSV data. CSV Editor is a high-performance MCP server that gives Claude, ChatGPT, and other AI assistants powerful data manipulation capabilities through simple commands.
🎯 Why CSV Editor?
The Problem
AI assistants struggle with complex data operations - they can read files but lack tools for filtering, transforming, analyzing, and validating CSV data efficiently.
The Solution
CSV Editor bridges this gap by providing AI assistants with 40+ specialized tools for CSV operations, turning them into powerful data analysts that can:
- Clean messy datasets in seconds
- Perform complex statistical analysis
- Validate data quality automatically
- Transform data with natural language commands
- Track all changes with undo/redo capabilities
Key Differentiators
| Feature | CSV Editor | Traditional Tools |
|---|---|---|
| AI Integration | Native MCP protocol | Manual operations |
| Auto-Save | Automatic with strategies | Manual save required |
| History Tracking | Full undo/redo with snapshots | Limited or none |
| Session Management | Multi-user isolated sessions | Single user |
| Data Validation | Built-in quality scoring | Separate tools needed |
| Performance | Handles GB+ files with chunking | Memory limitations |
⚡ Quick Demo
# Your AI assistant can now do this:
"Load the sales data and remove duplicates"
"Filter for Q4 2024 transactions over $10,000"
"Calculate correlation between price and quantity"
"Fill missing values with the median"
"Export as Excel with the analysis"
# All with automatic history tracking and undo capability!
🚀 Quick Start (2 minutes)
Fastest Installation (Recommended)
# Install uv if needed (one-time setup)
curl -LsSf https://astral.sh/uv/install.sh | sh
# Clone and run
git clone https://github.com/santoshray02/csv-editor.git
cd csv-editor
uv sync
uv run csv-editor
Configure Your AI Assistant
<details> <summary><b>Claude Desktop</b> (Click to expand)</summary>
Add to ~/Library/Application Support/Claude/claude_desktop_config.json (macOS):
{
"mcpServers": {
"csv-editor": {
"command": "uv",
"args": ["tool", "run", "csv-editor"],
"env": {
"CSV_MAX_FILE_SIZE": "1073741824"
}
}
}
}
</details>
<details> <summary><b>Other Clients</b> (Continue, Cline, Windsurf, Zed)</summary>
See MCP_CONFIG.md for detailed configuration.
</details>
💡 Real-World Use Cases
📊 Data Analyst Workflow
# Morning: Load yesterday's data
session = load_csv("daily_sales.csv")
# Clean: Remove duplicates and fix types
remove_duplicates(session_id)
change_column_type("date", "datetime")
fill_missing_values(strategy="median", columns=["revenue"])
# Analyze: Get insights
get_statistics(columns=["revenue", "quantity"])
detect_outliers(method="iqr", threshold=1.5)
get_correlation_matrix(min_correlation=0.5)
# Report: Export cleaned data
export_csv(format="excel", file_path="clean_sales.xlsx")
🏭 ETL Pipeline
# Extract from multiple sources
load_csv_from_url("https://api.example.com/data.csv")
# Transform with complex operations
filter_rows(conditions=[
{"column": "status", "operator": "==", "value": "active"},
{"column": "amount", "operator": ">", "value": 1000}
])
add_column(name="quarter", formula="Q{(month-1)//3 + 1}")
group_by_aggregate(group_by=["quarter"], aggregations={
"amount": ["sum", "mean"],
"customer_id": "count"
})
# Load to different formats
export_csv(format="parquet") # For data warehouse
export_csv(format="json") # For API
🔍 Data Quality Assurance
# Validate incoming data
validate_schema(schema={
"customer_id": {"type": "integer", "required": True},
"email": {"type": "string", "pattern": r"^[^@]+@[^@]+\.[^@]+$"},
"age": {"type": "integer", "min": 0, "max": 120}
})
# Quality scoring
quality_report = check_data_quality()
# Returns: overall_score, missing_data%, duplicates, outliers
# Anomaly detection
anomalies = find_anomalies(methods=["statistical", "pattern"])
🎨 Core Features
Data Operations
- Load & Export: CSV, JSON, Excel, Parquet, HTML, Markdown
- Transform: Filter, sort, group, pivot, join
- Clean: Remove duplicates, handle missing values, fix types
- Calculate: Add computed columns, aggregations
Analysis Tools
- Statistics: Descriptive stats, correlations, distributions
- Outliers: IQR, Z-score, custom thresholds
- Profiling: Complete data quality reports
- Validation: Schema checking, quality scoring
Productivity Features
- Auto-Save: Never lose work with configurable strategies
- History: Full undo/redo with operation tracking
- Sessions: Multi-user support with isolation
- Performance: Stream processing for large files
📚 Available Tools
<details> <summary><b>Complete Tool List</b> (40+ tools)</summary>
I/O Operations
load_csv- Load from fileload_csv_from_url- Load from URLload_csv_from_content- Load from stringexport_csv- Export to various formatsget_session_info- Session detailslist_sessions- Active sessionsclose_session- Cleanup
Data Manipulation
filter_rows- Complex filteringsort_data- Multi-column sortselect_columns- Column selectionrename_columns- Rename columnsadd_column- Add computed columnsremove_columns- Remove columnsupdate_column- Update valueschange_column_type- Type conversionfill_missing_values- Handle nullsremove_duplicates- Deduplicate
Analysis
get_statistics- Statistical summaryget_column_statistics- Column statsget_correlation_matrix- Correlationsgroup_by_aggregate- Group operationsget_value_counts- Frequency countsdetect_outliers- Find outliersprofile_data- Data profiling
Validation
validate_schema- Schema validationcheck_data_quality- Quality metricsfind_anomalies- Anomaly detection
Auto-Save & History
configure_auto_save- Setup auto-saveget_auto_save_status- Check statusundo/redo- Navigate historyget_history- View operationsrestore_to_operation- Time travel
</details>
⚙️ Configuration
Environment Variables
| Variable | Default | Description |
|---|---|---|
CSV_MAX_FILE_SIZE |
1GB | Maximum file size |
CSV_SESSION_TIMEOUT |
3600s | Session timeout |
CSV_CHUNK_SIZE |
10000 | Processing chunk size |
CSV_AUTO_SAVE |
true | Enable auto-save |
Auto-Save Strategies
CSV Editor automatically saves your work with configurable strategies:
- Overwrite (default) - Update original file
- Backup - Create timestamped backups
- Versioned - Maintain version history
- Custom - Save to specified location
# Configure auto-save
configure_auto_save(
strategy="backup",
backup_dir="/backups",
max_backups=10
)
🛠️ Advanced Installation Options
<details> <summary><b>Alternative Installation Methods</b></summary>
Using pip
git clone https://github.com/santoshray02/csv-editor.git
cd csv-editor
pip install -e .
Using pipx (Global)
pipx install git+https://github.com/santoshray02/csv-editor.git
From GitHub (Recommended)
# Install latest version
pip install git+https://github.com/santoshray02/csv-editor.git
# Or using uv
uv pip install git+https://github.com/santoshray02/csv-editor.git
# Install specific version
pip install git+https://github.com/santoshray02/csv-editor.git@v1.0.1
</details>
🧪 Development
Running Tests
uv run test # Run tests
uv run test-cov # With coverage
uv run all-checks # Format, lint, type-check, test
Project Structure
csv-editor/
├── src/csv_editor/ # Core implementation
│ ├── tools/ # MCP tool implementations
│ ├── models/ # Data models
│ └── server.py # MCP server
├── tests/ # Test suite
├── examples/ # Usage examples
└── docs/ # Documentation
🤝 Contributing
We welcome contributions! See CONTRIBUTING.md for guidelines.
Quick Contribution Guide
- Fork the repository
- Create a feature branch
- Make your changes with tests
- Run
uv run all-checks - Submit a pull request
📈 Roadmap
- [ ] SQL query interface
- [ ] Real-time collaboration
- [ ] Advanced visualizations
- [ ] Machine learning integrations
- [ ] Cloud storage support
- [ ] Performance optimizations for 10GB+ files
💬 Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Documentation: Wiki
📄 License
MIT License - see LICENSE file
🙏 Acknowledgments
Built with:
Ready to supercharge your AI's data capabilities? Get started in 2 minutes →
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.