Crawl4Claude

Crawl4Claude

A comprehensive, domain-agnostic documentation scraping and AI integration toolkit. Scrape any documentation website, create structured databases, and integrate with Claude Desktop via MCP (Model Context Protocol) for seamless AI-powered documentation assistance.

Category
Visit Server

README

Documentation Scraper & MCP Server

A comprehensive, domain-agnostic documentation scraping and AI integration toolkit. Scrape any documentation website, create structured databases, and integrate with Claude Desktop via MCP (Model Context Protocol) for seamless AI-powered documentation assistance.

🚀 Features

Core Functionality

  • 🌐 Universal Documentation Scraper: Works with any documentation website
  • 📊 Structured Database: SQLite database with full-text search capabilities
  • 🤖 MCP Server Integration: Native Claude Desktop integration via Model Context Protocol
  • 📝 LLM-Optimized Output: Ready-to-use context files for AI applications
  • ⚙️ Configuration-Driven: Single config file controls all settings

Advanced Tools

  • 🔍 Query Interface: Command-line tool for searching and analyzing scraped content
  • 🛠️ Debug Suite: Comprehensive debugging tools for testing and validation
  • 📋 Auto-Configuration: Automatic MCP setup file generation
  • 📈 Progress Tracking: Detailed logging and error handling
  • 💾 Resumable Crawls: Smart caching for interrupted crawls

📋 Prerequisites

  • Python 3.8 or higher
  • Internet connection
  • ~500MB free disk space per documentation site

🛠️ Quick Start

1. Installation

# Clone the repository
git clone <repository-url>
cd documentation-scraper

# Install dependencies
pip install -r requirements.txt

2. Configure Your Target

Edit config.py to set your documentation site:

SCRAPER_CONFIG = {
    "base_url": "https://docs.example.com/",  # Your documentation site
    "output_dir": "docs_db",
    "max_pages": 200,
    # ... other settings
}

3. Run the Scraper

python docs_scraper.py

4. Query Your Documentation

# Search for content
python query_docs.py --search "tutorial"

# Browse by section
python query_docs.py --section "getting-started"

# Get statistics
python query_docs.py --stats

5. Set Up Claude Integration

# Generate MCP configuration files
python utils/gen_mcp.py

# Follow the instructions to add to Claude Desktop

🏗️ Project Structure

📁 documentation-scraper/
├── 📄 config.py                    # Central configuration file
├── 🕷️ docs_scraper.py              # Main scraper script
├── 🔍 query_docs.py                # Query and analysis tool
├── 🤖 mcp_docs_server.py           # MCP server for Claude integration
├── 📋 requirements.txt             # Python dependencies
├── 📁 utils/                       # Debug and utility tools
│   ├── 🛠️ gen_mcp.py               # Generate MCP config files
│   ├── 🧪 debug_scraper.py         # Test scraper functionality
│   ├── 🔧 debug_mcp_server.py      # Debug MCP server
│   ├── 🎯 debug_mcp_client.py      # Test MCP tools directly
│   ├── 📡 debug_mcp_server_protocol.py # Test MCP via JSON-RPC
│   └── 🌐 debug_site_content.py    # Debug content extraction
├── 📁 docs_db/                     # Generated documentation database
│   ├── 📊 documentation.db         # SQLite database
│   ├── 📄 documentation.json       # JSON export
│   ├── 📋 scrape_summary.json      # Statistics
│   └── 📁 llm_context/             # LLM-ready context files
└── 📁 mcp/                         # Generated MCP configuration
    ├── 🔧 run_mcp_server.bat       # Windows launcher script
    └── ⚙️ claude_mcp_config.json   # Claude Desktop config

⚙️ Configuration

Main Configuration (config.py)

The entire system is controlled by a single configuration file:

# Basic scraping settings
SCRAPER_CONFIG = {
    "base_url": "https://docs.example.com/",
    "output_dir": "docs_db",
    "max_depth": 3,
    "max_pages": 200,
    "delay_between_requests": 0.5,
}

# URL filtering rules
URL_FILTER_CONFIG = {
    "skip_patterns": [r'/api/', r'\.pdf$'],
    "allowed_domains": ["docs.example.com"],
}

# MCP server settings
MCP_CONFIG = {
    "server_name": "docs-server",
    "default_search_limit": 10,
    "max_search_limit": 50,
}

Environment Overrides

You can override any setting with environment variables:

export DOCS_DB_PATH="/custom/path/documentation.db"
export DOCS_BASE_URL="https://different-docs.com/"
python mcp_docs_server.py

🤖 Claude Desktop Integration

Automatic Setup

  1. Generate configuration files:

    python utils/gen_mcp.py
    
  2. Copy the generated config to Claude Desktop:

    • Windows: %APPDATA%\Claude\claude_desktop_config.json
    • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  3. Restart Claude Desktop

Manual Setup

If you prefer manual setup, add this to your Claude Desktop config:

{
  "mcpServers": {
    "docs": {
      "command": "python",
      "args": ["path/to/mcp_docs_server.py"],
      "cwd": "path/to/project",
      "env": {
        "DOCS_DB_PATH": "path/to/docs_db/documentation.db"
      }
    }
  }
}

Available MCP Tools

Once connected, Claude can use these tools:

  • 🔍 search_documentation: Search for content across all documentation
  • 📚 get_documentation_sections: List all available sections
  • 📄 get_page_content: Get full content of specific pages
  • 🗂️ browse_section: Browse pages within a section
  • 📊 get_documentation_stats: Get database statistics

🔧 Command Line Tools

Documentation Scraper

# Basic scraping
python docs_scraper.py

# Override config settings
python docs_scraper.py  # Settings from config.py

Query Tool

# Search for content
python query_docs.py --search "authentication guide"

# Browse specific sections  
python query_docs.py --section "api-reference"

# Get database statistics
python query_docs.py --stats

# List all sections
python query_docs.py --list-sections

# Export section to file
python query_docs.py --export-section "tutorials" --format markdown > tutorials.md

# Use custom database
python query_docs.py --db "custom/path/docs.db" --search "example"

Debug Tools

# Test scraper functionality
python utils/debug_scraper.py

# Test MCP server
python utils/debug_mcp_server.py

# Test MCP tools directly
python utils/debug_mcp_client.py

# Test MCP protocol
python utils/debug_mcp_server_protocol.py

# Debug content extraction
python utils/debug_site_content.py

# Generate MCP config files
python utils/gen_mcp.py

📊 Database Schema

Pages Table

CREATE TABLE pages (
    id INTEGER PRIMARY KEY,
    url TEXT UNIQUE NOT NULL,
    title TEXT,
    content TEXT,
    markdown TEXT,
    word_count INTEGER,
    section TEXT,
    subsection TEXT,
    scraped_at TIMESTAMP,
    metadata TEXT
);

Full-Text Search

-- Search using FTS5
SELECT * FROM pages_fts WHERE pages_fts MATCH 'your search term';

-- Or use the query tool
python query_docs.py --search "your search term"

🎯 Example Use Cases

1. Documentation Analysis

# Get overview of documentation
python query_docs.py --stats

# Find all tutorial content
python query_docs.py --search "tutorial guide example"

# Export specific sections
python query_docs.py --export-section "getting-started" > onboarding.md

2. AI Integration with Claude

# Once MCP is set up, ask Claude:
# "Search the documentation for authentication examples"
# "What sections are available in the documentation?"
# "Show me the content for the API reference page"

3. Custom Applications

import sqlite3

# Connect to your scraped documentation
conn = sqlite3.connect('docs_db/documentation.db')

# Query for specific content
results = conn.execute("""
    SELECT title, url, markdown 
    FROM pages 
    WHERE section = 'tutorials' 
    AND word_count > 500
    ORDER BY word_count DESC
""").fetchall()

# Build your own tools on top of the structured data

🔍 Debugging and Testing

Test Scraper Before Full Run

python utils/debug_scraper.py

Validate Content Extraction

python utils/debug_site_content.py

Test MCP Integration

# Test server functionality
python utils/debug_mcp_server.py

# Test tools directly
python utils/debug_mcp_client.py

# Test JSON-RPC protocol
python utils/debug_mcp_server_protocol.py

📈 Performance and Optimization

Scraping Performance

  • Start small: Use max_pages=50 for testing
  • Adjust depth: max_depth=2 covers most content efficiently
  • Rate limiting: Increase delay_between_requests if getting blocked
  • Caching: Enabled by default for resumable crawls

Database Performance

  • Full-text search: Automatic FTS5 index for fast searching
  • Indexing: Optimized indexes on URL and section columns
  • Word counts: Pre-calculated for quick statistics

MCP Performance

  • Configurable limits: Set appropriate search and section limits
  • Snippet length: Adjust snippet size for optimal response times
  • Connection pooling: Efficient database connections

🌐 Supported Documentation Sites

This scraper works with most documentation websites including:

  • Static sites: Hugo, Jekyll, MkDocs, Docusaurus
  • Documentation platforms: GitBook, Notion, Confluence
  • API docs: Swagger/OpenAPI documentation
  • Wiki-style: MediaWiki, TiddlyWiki
  • Custom sites: Any site with consistent HTML structure

Site-Specific Configuration

Customize URL filtering and content extraction for your target site:

URL_FILTER_CONFIG = {
    "skip_patterns": [
        r'/api/',           # Skip API endpoint docs
        r'/edit/',          # Skip edit pages  
        r'\.pdf$',          # Skip PDF files
    ],
    "allowed_domains": ["docs.yoursite.com"],
}

CONTENT_FILTER_CONFIG = {
    "remove_patterns": [
        r'Edit this page.*?\n',      # Remove edit links
        r'Was this helpful\?.*?\n',  # Remove feedback sections
    ],
}

🤝 Contributing

We welcome contributions! Here are some areas where you can help:

  • New export formats: PDF, EPUB, Word documents
  • Enhanced content filtering: Better noise removal
  • Additional debug tools: More comprehensive testing
  • Documentation: Improve guides and examples
  • Performance optimizations: Faster scraping and querying

⚠️ Responsible Usage

  • Respect robots.txt: Check the target site's robots.txt file
  • Rate limiting: Use appropriate delays between requests
  • Terms of service: Respect the documentation site's terms
  • Fair use: Use for educational, research, or personal purposes
  • Attribution: Credit the original documentation source

📄 License

This project is provided as-is for educational and research purposes. Please respect the terms of service and licensing of the documentation sites you scrape.


🎉 Getting Started Examples

Example 1: Scrape Python Documentation

# config.py
SCRAPER_CONFIG = {
    "base_url": "https://docs.python.org/3/",
    "max_pages": 500,
    "max_depth": 3,
}

Example 2: Scrape API Documentation

# config.py  
SCRAPER_CONFIG = {
    "base_url": "https://api-docs.example.com/",
    "max_pages": 200,
}

URL_FILTER_CONFIG = {
    "skip_patterns": [r'/changelog/', r'/releases/'],
}

Example 3: Corporate Documentation

# config.py
SCRAPER_CONFIG = {
    "base_url": "https://internal-docs.company.com/",
    "output_dir": "company_docs",
}

MCP_CONFIG = {
    "server_name": "company-docs-server",
    "docs_display_name": "Company Internal Docs",
}

Happy Documenting! 📚✨

For questions, issues, or feature requests, please check the debug logs first, then create an issue with relevant details.


🙏 Attribution

This project is powered by Crawl4AI - an amazing open-source LLM-friendly web crawler and scraper.

<a href="https://github.com/unclecode/crawl4ai"> <img src="https://img.shields.io/badge/Powered%20by-Crawl4AI-blue?style=flat-square" alt="Powered by Crawl4AI"/> </a>

Crawl4AI enables the intelligent web scraping capabilities that make this documentation toolkit possible. A huge thanks to @unclecode and the Crawl4AI community for building such an incredible tool! 🚀

Check out Crawl4AI:

  • Repository: https://github.com/unclecode/crawl4ai
  • Documentation: https://crawl4ai.com
  • Discord Community: https://discord.gg/jP8KfhDhyN

📄 License

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured