Copernicus Earth Observation MCP Server

Copernicus Earth Observation MCP Server

Provides tools to search, download, and manage satellite imagery from all Copernicus Sentinel missions via the Copernicus Data Space ecosystem. It enables advanced geospatial queries, temporal coverage analysis, and automated data management for Earth observation tasks.

Category
Visit Server

README

Copernicus Earth Observation MCP Server

A comprehensive Model Context Protocol (MCP) server for accessing Copernicus Earth Observation data from the Copernicus Data Space ecosystem. This server provides a complete suite of tools for searching, downloading, and managing satellite imagery from all Copernicus Sentinel missions.

๐Ÿ“‹ Table of Contents

๐ŸŒŸ Features

Search & Discovery

  • Multi-Mission Support: Access data from Sentinel-1, Sentinel-2, Sentinel-3, Sentinel-5P, and Sentinel-6 missions
  • Advanced Search: Search by location (point, polygon, bounding box), date range, cloud cover, and mission-specific parameters
  • Coverage Analysis: Analyze temporal coverage and availability of satellite data for specific regions
  • Recent Images: Get the most recent satellite images for monitoring and change detection
  • Comprehensive Metadata: Retrieve detailed image metadata including acquisition details, processing levels, and technical specifications

Download & Data Management

  • Image Download: Download full products, quicklook previews, and compressed versions of satellite images
  • Batch Operations: Download multiple images concurrently with configurable concurrency limits
  • Intelligent Selection: Automatic best-image selection based on recency, cloud cover, and processing level
  • Availability Checking: Verify download availability and get file size information before downloading
  • Download Links: Get all available download URLs for any satellite image

File Management

  • File Listing: List and analyze downloaded files with filtering by type, size, and date
  • Statistics: Get comprehensive statistics about downloaded files (by mission, file type, time period)
  • Automated Cleanup: Clean up old or large downloads with age-based and size-based strategies
  • Dry Run Mode: Safety-first approach with preview of cleanup actions before execution

๐Ÿ›ฐ๏ธ Available Missions

Mission Type Primary Applications Resolution Revisit Time
Sentinel-1 Synthetic Aperture Radar (SAR) Disaster monitoring, sea ice tracking, land subsidence 5-40m 6-12 days
Sentinel-2 Multispectral Imaging Agriculture, vegetation monitoring, urban planning 10-60m 5 days
Sentinel-3 Ocean & Land Monitoring Ocean color, sea surface temperature, fire detection 300-1200m <2 days
Sentinel-5P Atmospheric Monitoring Air quality, ozone layer, greenhouse gas tracking 7.5ร—3.5km Daily
Sentinel-6 Ocean Topography Sea level rise, ocean circulation, climate research 300m 10 days

๐Ÿš€ Quick Start

Prerequisites

  • Python 3.11 or higher
  • pip package manager
  • Copernicus Data Space account (free registration required)

Installation

  1. Clone the repository:

    git clone <repository-url>
    cd copernicus-mcp
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Install in development mode:

    pip install -e .
    
  4. Set up authentication:

    # Linux/Mac
    export COPERNICUS_USERNAME="your-email@example.com"
    export COPERNICUS_PASSWORD="your-password"
    
    # Windows (Command Prompt)
    set COPERNICUS_USERNAME=your-email@example.com
    set COPERNICUS_PASSWORD=your-password
    
    # Windows (PowerShell)
    $env:COPERNICUS_USERNAME="your-email@example.com"
    $env:COPERNICUS_PASSWORD="your-password"
    

    Register for free at: https://dataspace.copernicus.eu/

Authentication Test

Verify your credentials work:

python -c "
import asyncio
import os
from copernicus_mcp.server import get_auth_token

async def test():
    result = await get_auth_token()
    if isinstance(result, dict) and 'access_token' in result:
        print('โœ… Authentication successful!')
        print(f'Token length: {len(result[\"access_token\"])} characters')
    else:
        print(f'โŒ Authentication failed: {result.get(\"error\", \"Unknown error\")}')

asyncio.run(test())
"

๐Ÿ“ก Running the Server

Basic Usage

# Run the MCP server
python -m copernicus_mcp

# Or using the module directly
python -m copernicus_mcp.server

Command Line Options

# Show version
python -m copernicus_mcp --version

# Show help
python -m copernicus_mcp --help

MCP Client Integration

Add to your MCP client configuration (e.g., Claude Desktop, Zed):

{
  "mcpServers": {
    "copernicus-eo": {
      "command": "copernicus-mcp",
      "args": [],
      "env": {
        "COPERNICUS_DEBUG_AUTH": "true"
      },
      "description": "Access Copernicus Earth Observation satellite data"
    }
  }
}

๐Ÿ› ๏ธ Available Tools

Search & Discovery Tools

1. search_copernicus_images

Search for satellite images from Copernicus missions.

Parameters:

  • geometry: GeoJSON polygon coordinates, point [lon, lat], or bbox [min_lon, min_lat, max_lon, max_lat]
  • geometry_type: 'point', 'polygon', or 'bbox'
  • mission: Mission name ('sentinel-1', 'sentinel-2', 'sentinel-3', 'sentinel-5p', 'sentinel-6')
  • start_date, end_date: Date range (YYYY-MM-DD)
  • max_cloud_cover: Maximum cloud cover percentage (0-100, optical missions only)
  • max_results: Maximum number of results (1-1000)

Example:

# Search for Sentinel-2 images over Paris
search_copernicus_images(
    geometry=[[2.2945, 48.8584], [2.2945, 48.8604], [2.2965, 48.8604], [2.2965, 48.8584]],
    geometry_type="polygon",
    mission="sentinel-2",
    start_date="2024-01-01",
    end_date="2024-01-31",
    max_cloud_cover=20,
    max_results=10
)

2. get_image_details

Get comprehensive metadata for a specific satellite image.

Parameters:

  • image_id: Satellite image ID (from search results)
  • mission: Optional mission name

Returns: Detailed metadata including download URLs, processing level, cloud cover, footprint, and authentication guidance.

3. get_mission_info

Get detailed information about Copernicus satellite missions.

Parameters:

  • mission: Optional specific mission name

Returns: Mission capabilities, sensors, applications, resolution, and revisit time.

4. get_recent_images

Get the most recent satellite images for a region.

Parameters:

  • geometry: Location coordinates
  • geometry_type: 'point', 'polygon', or 'bbox'
  • mission: Mission name
  • days_back: Number of days to look back (default: 7)
  • max_results: Maximum results (default: 10)

5. check_coverage

Analyze satellite image coverage for a region over time.

Parameters:

  • geometry: Location coordinates
  • geometry_type: 'point', 'polygon', or 'bbox'
  • mission: Mission name
  • start_date, end_date: Analysis period
  • group_by: Group results by 'day', 'week', 'month', or 'year'

Download Tools

6. download_image

Download a Copernicus satellite image by ID.

Parameters:

  • image_id: Image ID from search results (required)
  • mission: Mission name (default: 'sentinel-2')
  • download_type: 'full', 'quicklook', or 'compressed' (default: 'full')
  • output_dir: Custom output directory (default: 'downloads')

Example:

# Download a quicklook preview
download_image(
    image_id="S2B_MSIL2A_20240115T105629_N0510_R094_T31UCS_20240115T130259",
    mission="sentinel-2",
    download_type="quicklook"
)

# Download full product
download_image(
    image_id="S2B_MSIL2A_20240115T105629_N0510_R094_T31UCS_20240115T130259",
    mission="sentinel-2",
    download_type="full"
)

7. batch_download_images

Download multiple images concurrently.

Parameters:

  • image_ids: List of image IDs to download
  • mission: Mission name (default: 'sentinel-2')
  • download_type: 'full', 'quicklook', or 'compressed' (default: 'full')
  • output_dir: Output directory (default: 'batch_downloads')
  • max_concurrent: Maximum concurrent downloads (default: 3)

Example:

batch_download_images(
    image_ids=["id1", "id2", "id3"],
    mission="sentinel-2",
    download_type="quicklook",
    max_concurrent=2
)

8. search_and_download

Search for images and automatically download the best match.

Parameters:

  • geometry: Location coordinates
  • geometry_type: 'point', 'polygon', or 'bbox' (default: 'point')
  • mission: Mission name (default: 'sentinel-2')
  • start_date, end_date: Search date range
  • max_cloud_cover: Maximum cloud cover percentage
  • download_type: 'full', 'quicklook', or 'compressed' (default: 'quicklook')
  • output_dir: Output directory
  • limit: Maximum search results to consider (default: 5)

Example:

# Search and download best image
search_and_download(
    geometry=[-122.4194, 37.7749],  # San Francisco
    geometry_type="point",
    mission="sentinel-2",
    start_date="2024-01-01",
    end_date="2024-01-31",
    download_type="quicklook"
)

9. check_download_availability

Check if images are available for download.

Parameters:

  • image_ids: List of image IDs to check

Returns: Availability status, file sizes, and quicklook availability for each image.

10. get_product_download_links

Get all available download links for an image.

Parameters:

  • image_id: Image ID

Returns: All download URLs (full, compressed, quicklooks) with metadata.

File Management Tools

11. list_downloaded_files

List downloaded satellite image files.

Parameters:

  • download_dir: Directory to scan (default: 'downloads')
  • file_type: Filter by 'full', 'quicklook', 'compressed', or None for all
  • limit: Maximum files to return (default: 50)

Example:

list_downloaded_files(
    download_dir="my_downloads",
    file_type="quicklook",
    limit=10
)

12. cleanup_downloads

Clean up downloaded files based on criteria.

Parameters:

  • download_dir: Directory to clean (default: 'downloads')
  • older_than_days: Remove files older than X days
  • max_size_mb: Keep total size under X MB (removes oldest first)
  • file_type: Filter by file type
  • dry_run: Only show what would be deleted (default: True)

Example:

# Dry run - see what would be deleted
cleanup_downloads(
    download_dir="downloads",
    older_than_days=30,
    dry_run=True
)

# Actually delete files older than 30 days
cleanup_downloads(
    download_dir="downloads",
    older_than_days=30,
    dry_run=False
)

# Keep total size under 10GB
cleanup_downloads(
    download_dir="downloads",
    max_size_mb=10240,
    dry_run=False
)

13. get_download_statistics

Get statistics about downloaded files.

Parameters:

  • download_dir: Directory to analyze (default: 'downloads')

Returns: Comprehensive statistics including total files, size, breakdown by mission/file type/month, and oldest/newest files.

๐Ÿ“Š Complete Workflow Example

# 1. Search for images
search_results = search_copernicus_images(
    geometry=[-122.4194, 37.7749],  # San Francisco
    geometry_type="point",
    mission="sentinel-2",
    start_date="2024-01-01",
    end_date="2024-01-31",
    max_cloud_cover=30,
    max_results=5
)

# 2. Extract image IDs
image_ids = [img["Id"] for img in search_results.get("products", [])]

# 3. Check availability
availability = check_download_availability(image_ids[:2])

# 4. Download quicklooks for available images
for image_id in image_ids[:2]:
    download_image(
        image_id=image_id,
        mission="sentinel-2",
        download_type="quicklook"
    )

# 5. List downloaded files
files = list_downloaded_files(
    download_dir="downloads",
    file_type="quicklook"
)

# 6. Get statistics
stats = get_download_statistics()

๐Ÿ”ง Configuration

Environment Variables

Variable Description Required For
COPERNICUS_USERNAME Copernicus Data Space email Download operations
COPERNICUS_PASSWORD Copernicus Data Space password Download operations
COPERNICUS_DEBUG_AUTH Enable authentication debugging Debugging
COPERNICUS_TEST_REAL_DOWNLOAD Enable real download tests Testing

Default Directories

  • Downloads: downloads/ (individual downloads)
  • Batch Downloads: batch_downloads/ (batch operations)
  • Search Results: search_downloads/ (search_and_download)

Performance Settings

  • Max Concurrent Downloads: 3 (configurable in batch_download_images)
  • API Timeout: 60 seconds
  • Download Chunk Size: 8KB
  • Token Cache: 4 minutes (with 1-minute buffer)

๐Ÿงช Testing

Test Scripts

# Test authentication and basic functionality
python test_simple_download.py

# Test end-to-end workflow (requires credentials)
python test_download_e2e.py

# Test with real credentials
export COPERNICUS_USERNAME="your-email@example.com"
export COPERNICUS_PASSWORD="your-password"
python test_download_e2e.py

Example Scripts

# Run complete examples
python example_download_usage.py

# Test specific functionality
python test_fix.py

๐Ÿ—๏ธ Architecture

Server Structure

copernicus-mcp/
โ”œโ”€โ”€ copernicus_mcp/          # Main package
โ”‚   โ”œโ”€โ”€ server.py           # Complete server implementation
โ”‚   โ”œโ”€โ”€ __init__.py         # Package exports
โ”‚   โ””โ”€โ”€ server_corrupted_backup.py  # Backup
โ”œโ”€โ”€ tests/                  # Test scripts
โ”‚   โ”œโ”€โ”€ test_simple_download.py
โ”‚   โ”œโ”€โ”€ test_download_e2e.py
โ”‚   โ”œโ”€โ”€ test_fix.py
โ”‚   โ””โ”€โ”€ test_download_tools.py
โ”œโ”€โ”€ examples/               # Usage examples
โ”‚   โ””โ”€โ”€ example_download_usage.py
โ”œโ”€โ”€ requirements.txt        # Python dependencies
โ”œโ”€โ”€ pyproject.toml         # Project configuration
โ”œโ”€โ”€ README.md              # This file
โ”œโ”€โ”€ DOWNLOAD_FUNCTIONS_SUMMARY.md  # Detailed docs
โ”œโ”€โ”€ mcp_config.json        # MCP client configuration
โ””โ”€โ”€ INSTALL.md             # Installation guide

Key Components

  1. Authentication Manager: Handles token acquisition, caching, and refresh
  2. Search Engine: Advanced query builder for Copernicus Data Space API
  3. Download Manager: Concurrent downloads with progress tracking
  4. File Manager: Disk space management and cleanup
  5. MCP Interface: FastMCP-based tool registration and protocol handling

๐Ÿ”’ Authentication Model

Public Access (No Authentication Required)

  • Mission information
  • Basic search operations
  • Metadata retrieval

Authenticated Access (Credentials Required)

  • Image downloads (full, quicklook, compressed)
  • Batch downloads
  • Availability checks
  • Download link retrieval

Token Management

  • Automatic token acquisition from Copernicus Identity Service
  • Token caching with expiration handling
  • Graceful error handling for invalid credentials
  • Support for both environment variables and parameter-based authentication

โš ๏ธ Error Handling

The server includes comprehensive error handling for:

Authentication Errors

  • Missing credentials
  • Invalid credentials
  • Token expiration
  • Rate limiting

API Errors

  • Invalid image IDs
  • Unavailable products
  • Network timeouts
  • API quota exceeded

File System Errors

  • Insufficient disk space
  • Permission denied
  • Invalid file paths
  • Corrupted downloads

User Input Errors

  • Invalid geometry formats
  • Unsupported mission parameters
  • Date range errors
  • Invalid download types

๐Ÿ“ˆ Performance Considerations

Download Sizes

  • Quicklooks: 100KB - 1MB (recommended for testing)
  • Compressed Products: 100MB - 1GB
  • Full Products: 1GB - 10GB+ (varies by mission)

Network Usage

  • Start with quicklook downloads for testing
  • Use max_concurrent to control bandwidth usage
  • Monitor disk space for large downloads

API Limits

  • Respect Copernicus Data Space API rate limits
  • Use appropriate date ranges and geographic extents
  • Cache search results when possible

๐Ÿšจ Security Notes

Credential Safety

  • Never hardcode credentials in code
  • Use environment variables or secure credential stores
  • Tokens are automatically refreshed and never stored permanently
  • All authentication errors are logged without exposing sensitive information

Network Security

  • All API calls use HTTPS with proper certificate validation
  • Download URLs are validated before use
  • Timeout settings prevent hanging connections

File Security

  • Downloaded files use standard file permissions
  • No automatic execution of downloaded content
  • Cleanup operations require explicit confirmation (dry-run mode by default)

๐Ÿ”ง Troubleshooting

Common Issues and Solutions

Authentication Failures

# Check if credentials are set
echo $COPERNICUS_USERNAME
echo $COPERNICUS_PASSWORD

# Test authentication directly
python -c "
import asyncio
from copernicus_mcp.server import get_auth_token
async def test():
    result = await get_auth_token()
    print('Result:', result)
asyncio.run(test())
"

Download Failures

  1. Check disk space: Ensure you have sufficient space for downloads
  2. Verify image ID: Use valid IDs from search results
  3. Try quicklook first: Test with smaller files before downloading full products
  4. Check network: Ensure stable internet connection

Search Issues

  1. Date range: Use reasonable date ranges (e.g., last 30 days)
  2. Geometry size: Keep search areas manageable
  3. Cloud cover: Adjust cloud cover filters for optical missions

Debug Mode

Enable debug logging for detailed information:

export COPERNICUS_DEBUG_AUTH=true
python -m copernicus_mcp

Log Files

  • Check application logs for detailed error messages
  • Monitor download progress in real-time
  • Review cleanup operations before execution

๐Ÿ™ Acknowledgments

Data Providers

  • European Space Agency (ESA) for the Copernicus program
  • Copernicus Data Space Ecosystem for providing API access
  • European Commission for funding and support

Technical Dependencies

  • FastMCP framework for MCP server implementation
  • httpx for async HTTP client functionality
  • pydantic for data validation and serialization
  • shapely for geometric operations

๐Ÿ“š Additional Resources

Documentation

Tutorials and Examples

  • Complete workflow examples in example_download_usage.py
  • Test scripts for different scenarios
  • Configuration examples in mcp_config.json

๐Ÿš€ Roadmap

Planned Features

  • Advanced filtering: More granular search parameters
  • Visualization tools: Image preview and analysis
  • Batch processing: Automated workflows for large datasets
  • Integration plugins: Support for GIS software and data analysis tools

Performance Improvements

  • Caching layer: Reduce API calls for repeated searches
  • Parallel processing: Optimize batch operations
  • Progress reporting: Enhanced download status updates

Community Features

  • Template workflows: Pre-configured analysis pipelines
  • Plugin system: Extensible architecture for custom tools
  • Collaboration tools: Shared datasets and analysis results

Note: This server is actively maintained. For the latest updates, check the GitHub repository and release notes.

Happy Earth Observation! ๐ŸŒ๐Ÿ›ฐ๏ธ

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured