Contextual MCP Server

Contextual MCP Server

ContextualAI

Developer Tools
Visit Server

README

Contextual MCP Server

A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Contextual AI. This server integrates with a variety of MCP clients. In this readme, we will show integration with the both Cursor IDE and Claude Desktop.

Overview

This MCP server acts as a bridge between AI interfaces (Cursor IDE or Claude Desktop) and a specialized Contextual AI agent. It enables:

  1. Query Processing: Direct your domain specific questions to a dedicated Contextual AI agent
  2. Intelligent Retrieval: Searches through comprehensive information in your knowledge base
  3. Context-Aware Responses: Generates answers that are:
  • Grounded in source documentation
  • Include citations and attributions
  • Maintain conversation context

Integration Flow

Cursor/Claude Desktop → MCP Server → Contextual AI RAG Agent
        ↑                  ↓             ↓                         
        └──────────────────┴─────────────┴─────────────── Response with citations

Prerequisites

  • Python 3.10 or higher
  • Cursor IDE and/or Claude Desktop
  • Contextual AI API key
  • MCP-compatible environment

Installation

  1. Clone the repository:
git clone https://github.com/ContextualAI/contextual-mcp-server.git
cd contextual-mcp-server
  1. Create and activate a virtual environment:
python -m venv .venv
source .venv/bin/activate  # On Windows, use `.venv\Scripts\activate`
  1. Install dependencies:
pip install -e .

Configuration

Environment Variables

The server requires the following environment variables:

  • API_KEY: Your Contextual AI API key
  • AGENT_ID: Your Contextual AI agent ID

If you'd like to store these files in .env file you can specify them like so:

cat > .env << EOF
API_KEY=key...
AGENT_ID=...
EOF

AI Interface Integration

This MCP server can be integrated with either Cursor IDE or Claude Desktop using the same configuration approach. Create or modify the MCP configuration file in the appropriate location:

  1. First, find the path to your uv installation:
UV_PATH=$(which uv)
echo $UV_PATH
# Example output: /Users/username/miniconda3/bin/uv
  1. Create the configuration file using the full path from step 1:
cat > mcp.json << EOF
{
 "mcpServers": {
   "ContextualAI-TechDocs": {
     "command": "$UV_PATH", # make sure this is set properly
     "args": [
       "--directory",
       "\${workspaceFolder}",  # Will be replaced with your project path
       "run",
       "multi-agent/server.py"
     ]
   }
 }
}
EOF
  1. Move to the correct folder location, see below for options:
mkdir -p .cursor/
mv mcp.json .cursor/

Configuration locations:

  • For Cursor:
  • Project-specific: .cursor/mcp.json in your project directory
  • Global: ~/.cursor/mcp.json for system-wide access
  • For Claude Desktop:
  • Use the same configuration file format in the appropriate Claude Desktop configuration directory

Environment Setup

This project uses uv for dependency management, which provides faster and more reliable Python package installation.

Usage

The server provides Contextual AI RAG capabilities using the python SDK, which can available a variety of commands accessible from MCP clients, such as Cursor IDE and Claude Desktop. The current server focuses on using the query command from the Contextual AI python SDK, however you could extend this to support other features such as listing all the agents, updating retrieval settings, updating prompts, extracting retrievals, or downloading metrics.

Example Usage

# In Cursor, you might ask:
"Show me the code for initiating the RF345 microchip?"


# The MCP server will:
1. Route the query to the Contextual AI agent
2. Retrieve relevant documentation
3. Generate a response with specific citations
4. Return the formatted answer to Cursor

Key Benefits

  1. Accurate Responses: All answers are grounded in your documentation
  2. Source Attribution: Every response includes references to source documents
  3. Context Awareness: The system maintains conversation context for follow-up questions
  4. Real-time Updates: Responses reflect the latest documentation in your datastore

Development

Project Structure

contextual-mcp-server/
├── server.py           # Main MCP server implementation
├── pyproject.toml      # Project dependencies and metadata
└── README.md          # Documentation

Modifying the Server

To add new capabilities:

  1. Add new tools by creating additional functions decorated with @mcp.tool()
  2. Define the tool's parameters using Python type hints
  3. Provide a clear docstring describing the tool's functionality

Example:

@mcp.tool()
def new_tool(param: str) -> str:
   """Description of what the tool does"""
   # Implementation
   return result

Technical Details

  • Transport: stdio (local execution)
  • Protocol: Model Context Protocol (MCP)

Limitations

  • The server runs locally and may not work in remote development environments
  • Tool responses are subject to Contextual AI API limits and quotas
  • Currently only supports stdio transport mode

For all the capabilities of Contextual AI, please check the official documentation.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
MCP Package Docs Server

MCP Package Docs Server

Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.

Featured
Local
TypeScript
Claude Code MCP

Claude Code MCP

An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.

Featured
Local
JavaScript
@kazuph/mcp-taskmanager

@kazuph/mcp-taskmanager

Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.

Featured
Local
JavaScript
Linear MCP Server

Linear MCP Server

Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.

Featured
JavaScript
mermaid-mcp-server

mermaid-mcp-server

A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.

Featured
JavaScript
Jira-Context-MCP

Jira-Context-MCP

MCP server to provide Jira Tickets information to AI coding agents like Cursor

Featured
TypeScript
Linear MCP Server

Linear MCP Server

A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Featured
JavaScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python