Context API MCP Server

Context API MCP Server

Accesses the doppelgangers.ai Social Media Context API to provide contextualized XML renderings of Twitter/X posts including conversation summaries and metadata. It enables semantic search and comprehensive post retrieval for high-quality analysis of social media trends and topics.

Category
Visit Server

README

Context API MCP Server

MCP (Model Context Protocol) server to access the doppelgangers.ai Social Media Context API.

This MCP server provides access to contextualized renderings (XML descriptions) of Twitter/X posts. The contextualization allows for:

  • More high-quality retrieval of relevant information from the posts,
  • More high-quality analysis of insights, trends, topics, etc. from the posts

The contextualization is achieved by adding the following information to the XML description of each post:

  • Descriptions of referenced posts and images
  • When the post is a reply in a conversation, the conversation or a summary of the conversation.
  • Metadata about the post (e.g., creation data, post ID, etc.)

Note that no descriptions are added yet related to referenced videos or links (external sites).

The XML structure helps to describe the relationship between posts and their context.

Using the available tools has a cost associated with it, with each call the credit balance is updated.

Features

  • search_relevant_posts: Semantic search of contextualized post renderings of a certain Twitter/X user, based on a natural language queries like "What does @visionscaper think about the future of AI?".

  • get_all_user_posts: Retrieve all contextualized post renderings of a specific Twitter/X user. This is useful to analyse the posts for insights, trends and topics over all posts.

  • check_credits: View your API credit balance and usage.

Installation

1. Get your API Key

Request an API key at dev.doppelgangers.ai:3003 or via the API:

curl -X POST https://dev.doppelgangers.ai:3003/auth/request-key \
  -H "Content-Type: application/json" \
  -d '{"email": "your@email.com", "name": "Your Name"}'

2. Configure Your Client

Add the following config to your MCP client:

{
  "mcpServers": {
    "context-api": {
      "command": "npx",
      "args": ["-y", "context-api-mcp"],
      "env": {
        "CONTEXT_API_KEY": "your-api-key-here"
      }
    }
  }
}

MCP Client configuration

<details> <summary>Amp</summary>

Follow Amp's MCP guide and use the config provided above. You can also install the Context API MCP server using the CLI:

amp mcp add context-api -- npx context-api-mcp

</details>

<details> <summary>Antigravity</summary>

To use the Context API MCP server follow the instructions from Antigravity's docs to install a custom MCP server. Add the following config to the MCP servers config:

{
  "mcpServers": {
    "context-api": {
      "command": "npx",
      "args": ["-y", "context-api-mcp"],
      "env": {
        "CONTEXT_API_KEY": "your-api-key-here"
      }
    }
  }
}

Note: If you encounter an "EOF" error, try using the absolute path to npx (e.g., /usr/local/bin/npx) or invoke the CLI script directly via node.

</details>

<details> <summary>Claude Code</summary>

Use the Claude Code CLI to add the Context API MCP server (guide):

claude mcp add context-api npx context-api-mcp

</details>

<details> <summary>Claude Desktop</summary>

Edit your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json

Add the Context API MCP server:

{
  "mcpServers": {
    "context-api": {
      "command": "npx",
      "args": ["-y", "context-api-mcp"],
      "env": {
        "CONTEXT_API_KEY": "your-api-key-here"
      }
    }
  }
}

After updating the configuration, restart Claude Desktop for changes to take effect.

</details>

<details> <summary>Cline</summary>

Follow Cline's MCP guide and use the config provided above.

</details>

<details> <summary>Codex</summary>

Follow the configure MCP guide using the standard config from above. You can also install the Context API MCP server using the Codex CLI:

codex mcp add context-api -- npx context-api-mcp

</details>

<details> <summary>Copilot CLI</summary>

Start Copilot CLI:

copilot

Start the dialog to add a new MCP server by running:

/mcp add

Configure the following fields and press CTRL+S to save the configuration:

  • Server name: context-api
  • Server Type: [1] Local
  • Command: npx -y context-api-mcp

</details>

<details> <summary>Copilot / VS Code</summary>

Follow the MCP install guide, with the standard config from above. You can also install the Context API MCP server using the VS Code CLI:

code --add-mcp '{"name":"context-api","command":"npx","args":["-y","context-api-mcp"],"env":{"CONTEXT_API_KEY":"your-api-key-here"}}'

</details>

<details> <summary>Cursor</summary>

  1. Open Cursor Settings
  2. Go to Features > MCP
  3. Click + Add New MCP Server
  4. Enter the following details:
    • Name: Context API
    • Type: command
    • Command: npx -y context-api-mcp
  5. Add your API key in the environment variables section if supported, or ensure it's set in your system environment.

</details>

<details> <summary>Factory CLI</summary>

Use the Factory CLI to add the Context API MCP server (guide):

droid mcp add context-api "npx -y context-api-mcp"

</details>

<details> <summary>Gemini CLI</summary>

Install the Context API MCP server using the Gemini CLI.

Project wide:

gemini mcp add context-api npx context-api-mcp

Globally:

gemini mcp add -s user context-api npx context-api-mcp

Alternatively, follow the MCP guide and use the standard config from above.

</details>

<details> <summary>Gemini Code Assist</summary>

Follow the configure MCP guide using the standard config from above.

</details>

<details> <summary>JetBrains AI Assistant & Junie</summary>

Go to Settings | Tools | AI Assistant | Model Context Protocol (MCP) -> Add. Use the config provided above. The same way context-api-mcp can be configured for JetBrains Junie in Settings | Tools | Junie | MCP Settings -> Add. Use the config provided above.

</details>

<details> <summary>Kiro</summary>

In Kiro Settings, go to Configure MCP > Open Workspace or User MCP Config > Use the configuration snippet provided above.

Or, from the IDE Activity Bar > Kiro > MCP Servers > Click Open MCP Config. Use the configuration snippet provided above.

</details>

<details> <summary>Qoder</summary>

In Qoder Settings, go to MCP Server > + Add > Use the configuration snippet provided above.

Alternatively, follow the MCP guide and use the standard config from above.

</details>

<details> <summary>Qoder CLI</summary>

Install the Context API MCP server using the Qoder CLI (guide):

Project wide:

qodercli mcp add context-api -- npx context-api-mcp

Globally:

qodercli mcp add -s user context-api -- npx context-api-mcp

</details>

<details> <summary>Visual Studio</summary>

Follow the Visual Studio MCP documentation to add the server using the standard config from above.

</details>

<details> <summary>Warp</summary>

Go to Settings | AI | Manage MCP Servers -> + Add to add an MCP Server. Use the config provided above.

</details>

<details> <summary>Windsurf</summary>

Follow the configure MCP guide using the standard config from above.

</details>

<details> <summary>Zed</summary>

Edit your Zed settings file (settings.json):

{
  "mcp": {
    "servers": {
      "context-api": {
        "command": "npx",
        "args": ["-y", "context-api-mcp"],
        "env": {
          "CONTEXT_API_KEY": "your-api-key-here"
        }
      }
    }
  }
}

</details>

Usage Examples

Once configured, you can use the tools in your MCP client:

Search Relevant Posts

Semantic search of contextualized post renderings of a certain Twitter/X user, based on a natural language query.

What does @elonmusk think about AI regulation?

Get All User Posts

Retrieve all contextualized post renderings of a specific Twitter/X user. This tool is useful when you need to analyse posts for insights, trends and topics over all posts.

What has recently been the mood of @elonmusk?

Check Credits

Check your Context API credit balance and usage statistics.

How many API credits do I have left?

Tool Reference

search_relevant_posts

search_relevant_posts

Semantic search of contextualized post renderings of a certain Twitter/X user, based on a natural language query. Use this tool to find specific posts, relevant to the query.

Parameter Type Required Description
query string Yes Natural language search query
username string Yes Twitter/X username (without @)
platform string No Platform (default: "X")

get_all_user_posts

Retrieve all contextualized post renderings of a specific Twitter/X user. This tool is useful when you need to analyse posts for insights, trends and topics over all posts.

Parameter Type Required Description
username string Yes Twitter/X username (without @)
platform string No Platform (default: "X")
simple boolean No If true, returns simplified post renderings without metadata
limit number No Max results to return (default: all)
offset number No Pagination offset (default: 0)

check_credits

Check your Context API credit balance and usage statistics. No parameters required.

Environment Variables

Variable Required Default Description
CONTEXT_API_KEY Yes - Your Context API key
CONTEXT_API_URL No https://dev.doppelgangers.ai:3003 API base URL (optional)

Troubleshooting

Server not showing in Client

  1. Ensure you have Node.js 18+ installed
  2. Check that CONTEXT_API_KEY is set correctly
  3. Restart your client completely

API errors

Check the client logs for detailed error messages. The server outputs to stderr to avoid interfering with the MCP protocol.

Test the server manually

CONTEXT_API_KEY=your-key npx context-api-mcp

Development

To run the server from source:

  1. Clone the repository
  2. Install dependencies:
    npm install
    
  3. Build the project:
    npm run build
    
  4. Run the server:
    node dist/index.js
    

Links

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured