Container MCP Server
Enables weather lookups, mathematical calculations, and context-aware operations through a containerized MCP server with HTTP transport. Optimized for Docker/Kubernetes deployment with health checks and no external dependencies.
README
Container MCP Server
A Model Context Protocol (MCP) server designed for containerized deployment with HTTP transport. This server provides simple, dependency-free tools and prompts that can be used by MCP clients via streamable HTTP transport.
Features
- HTTP Transport: Uses streamable HTTP transport for remote MCP server deployment
- Container Ready: Optimized for Docker/Kubernetes deployment with health checks
- Simple Tools: Weather data, mathematical calculations, and context-aware operations
- Prompts: Reusable templates for weather reports and calculations
- No External Dependencies: Mock data for easy testing and demonstration
Tools
1. get_weather
Get mock weather information for a city.
Parameters:
city(string, optional): City name (default: "San Francisco")
Returns: Weather data including temperature, condition, and humidity
2. sum_numbers
Add two numbers together.
Parameters:
a(float): First numberb(float): Second number
Returns: The sum of the two numbers
3. context_info
Demonstrate MCP context capabilities including logging, progress reporting, and metadata access.
Parameters:
message(string): A message to processctx(Context): MCP Context object (automatically injected)
Returns: Information about the context and processing
Prompts
1. weather_report
Generate weather report prompts for specified cities.
Arguments:
city(string): City name for the weather reportformat(string): Report format ("brief", "detailed", or "forecast")
2. calculation_helper
Generate prompts for mathematical calculations.
Arguments:
operation(string): Type of mathematical operationcontext(string): Additional context for the calculation
Installation & Development
Using Virtual Environment (Recommended)
-
Create and activate virtual environment:
# Create virtual environment python -m venv venv # Activate virtual environment # On Unix/macOS: source venv/bin/activate # On Windows: # venv\Scripts\activate -
Install dependencies:
pip install -r requirements.txt -
Run in development mode:
python -m src.server --port 8000 --log-level DEBUG -
Run tests:
pytest -
Deactivate virtual environment when done:
deactivate
Without Virtual Environment (Not Recommended)
-
Install dependencies:
pip install -r requirements.txt -
Run in development mode:
python -m src.server --port 8000 --log-level DEBUG -
Run tests:
pytest
Direct Execution
The server supports direct execution for development and testing:
# Basic execution
python src/server.py
# With custom options
python src/server.py --port 3000 --log-level DEBUG --json-response
Command-line options:
--port: Port to run the server on (default: 8000)--log-level: Logging level (default: INFO)--json-response: Use JSON responses instead of SSE streams
Container Deployment
Docker
-
Build the container:
docker build -t mcp-server . -
Run the container:
docker run -p 8000:8000 mcp-server -
With custom environment:
docker run -p 8000:8000 -e LOG_LEVEL=DEBUG mcp-server
Docker Compose
-
Basic deployment:
docker-compose up -
With production nginx proxy:
docker-compose --profile production up
Kubernetes
Example deployment:
apiVersion: apps/v1
kind: Deployment
metadata:
name: mcp-server
spec:
replicas: 3
selector:
matchLabels:
app: mcp-server
template:
metadata:
labels:
app: mcp-server
spec:
containers:
- name: mcp-server
image: mcp-server:latest
ports:
- containerPort: 8000
livenessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 30
periodSeconds: 10
---
apiVersion: v1
kind: Service
metadata:
name: mcp-service
spec:
selector:
app: mcp-server
ports:
- port: 80
targetPort: 8000
type: LoadBalancer
API Endpoints
Health Check
- URL:
GET /health - Response: Server health status and metadata
- Use: Container orchestration health checks
Server Info
- URL:
GET / - Response: Server information, available tools, and prompts
- Use: Discovery and documentation
MCP Endpoint
- URL:
POST /mcp - Protocol: MCP over HTTP (JSON-RPC 2.0)
- Transport: Streamable HTTP with SSE support
- Use: MCP client connections
Connection Details
For MCP Clients
Server URL: http://localhost:8000/mcp
Transport: Streamable HTTP
Authentication: None (can be extended)
Example Client Connection (Python)
import asyncio
from mcp import ClientSession
from mcp.client.streamable_http import streamablehttp_client
async def main():
async with streamablehttp_client("http://localhost:8000/mcp") as (read, write, _):
async with ClientSession(read, write) as session:
await session.initialize()
# List available tools
tools = await session.list_tools()
print(f"Available tools: {[tool.name for tool in tools.tools]}")
# Call a tool
result = await session.call_tool("get_weather", {"city": "New York"})
print(f"Weather result: {result}")
if __name__ == "__main__":
asyncio.run(main())
Testing
Unit Tests
pytest tests/
Integration Tests
# Start the server
python -m src.server --port 8001 &
SERVER_PID=$!
# Test health endpoint
curl http://localhost:8001/health
# Test server info
curl http://localhost:8001/
# Test MCP connection with a client
# (see example above)
# Cleanup
kill $SERVER_PID
Container Tests
# Test container build
docker build -t mcp-server-test .
# Test container run
docker run -d -p 8002:8000 --name mcp-test mcp-server-test
# Test health check
curl http://localhost:8002/health
# Cleanup
docker stop mcp-test && docker rm mcp-test
Monitoring
Health Checks
The server provides a /health endpoint that returns:
- Server status
- Tool and prompt counts
- Transport information
Logging
Structured logging with configurable levels:
# Set log level via environment
export LOG_LEVEL=DEBUG
python -m src.server
# Or via command line
python -m src.server --log-level DEBUG
Metrics
For production deployments, consider adding:
- Prometheus metrics endpoint
- OpenTelemetry tracing
- Request/response logging
Architecture
┌─────────────────┐ HTTP/SSE ┌─────────────────┐
│ MCP Client │ ◄──────────────► │ MCP Server │
│ │ │ │
│ - Claude Code │ │ - Tools │
│ - Custom Client │ │ - Prompts │
│ - Web App │ │ - Health Check │
└─────────────────┘ └─────────────────┘
│
▼
┌─────────────────┐
│ Container │
│ │
│ - Docker │
│ - Kubernetes │
│ - Cloud Run │
└─────────────────┘
Security Considerations
- The server runs as a non-root user in containers
- No secrets or API keys are required for basic functionality
- Consider adding authentication for production deployments
- Network policies should restrict access to necessary ports only
Contributing
- Fork the repository
- Create a feature branch
- Make changes with tests
- Run the test suite
- Submit a pull request
License
This project is available under the MIT License.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.