ComfyUI MCP Server

ComfyUI MCP Server

Enables comprehensive ComfyUI workflow automation including image generation, workflow management, node discovery, and system monitoring through natural language interactions with local or remote ComfyUI servers.

Category
Visit Server

README

Comfy MCP Server

smithery badge

MCP server for comprehensive ComfyUI workflow automation, management, and image generation.

Overview

This server provides Claude Code (and other MCP clients) with full access to ComfyUI capabilities:

  • System monitoring: Check server health, queue status, and history
  • Workflow execution: Run saved workflows or execute custom workflow dicts
  • Workflow management: Create, modify, save, and validate workflows
  • Node discovery: List available nodes, models, and their parameters
  • Image generation: Simple prompt-based generation or full workflow control

Key Features

āœ… Schema-Validated Workflows

All generated workflows are validated against the ComfyUI v0.4 workflow schema, ensuring compatibility and correct execution. No more invalid workflow errors.

šŸŽØ Beautiful Visual Layout

Programmatically generated workflows have coherent node positions with proper spacing and alignment. The built-in layout engine produces untangled, professional-looking workflows that are easy to read and modify in the ComfyUI editor.

Technical: Uses graph-based layout algorithms (NetworkX) to automatically position nodes, eliminating the typical spaghetti diagrams from programmatic workflow generation.

Prerequisites

  • uv - Python package manager
  • Running ComfyUI server (local or remote)
  • Workflow files exported from ComfyUI (API format)

Installation

Via PyPI (Recommended)

# Run directly with uvx
uvx comfyui-easy-mcp

# Or install globally
uv pip install comfyui-easy-mcp

From Source

git clone https://github.com/IO-AtelierTech/comfyui-mcp.git
cd comfyui-mcp
uv sync

Configuration

Environment Variables

Variable Required Default Description
COMFY_URL No http://localhost:8188 ComfyUI server URL
COMFY_URL_EXTERNAL No Same as COMFY_URL External URL for image retrieval
COMFY_WORKFLOWS_DIR No - Directory for API format workflows (execution)
COMFY_WORKFLOWS_UI_DIR No - Directory for UI format workflows (editor)
COMFY_WORKFLOW_JSON_FILE No - Default workflow file for generate_image
PROMPT_NODE_ID No - Default prompt node ID for generate_image
OUTPUT_NODE_ID No - Default output node ID
OUTPUT_MODE No file Output mode: file (Image) or url (string URL)
POLL_TIMEOUT No 60 Max seconds to wait for workflow (1-300)
POLL_INTERVAL No 1.0 Seconds between status polls (0.1-10.0)

Example Configuration

export COMFY_URL=http://localhost:8188
export COMFY_WORKFLOWS_DIR=/path/to/workflows-api      # API format for execution
export COMFY_WORKFLOWS_UI_DIR=/path/to/workflows-ui    # UI format for editor
export COMFY_WORKFLOW_JSON_FILE=/path/to/workflows-api/default.json
export PROMPT_NODE_ID=6
export OUTPUT_NODE_ID=9
export OUTPUT_MODE=file

Claude Desktop Config

{
  "mcpServers": {
    "ComfyUI": {
      "command": "uvx",
      "args": ["comfyui-easy-mcp"],
      "env": {
        "COMFY_URL": "http://localhost:8188",
        "COMFY_WORKFLOWS_DIR": "/path/to/workflows-api",
        "COMFY_WORKFLOWS_UI_DIR": "/path/to/workflows-ui",
        "COMFY_WORKFLOW_JSON_FILE": "/path/to/workflows-api/default.json",
        "PROMPT_NODE_ID": "6",
        "OUTPUT_NODE_ID": "9"
      }
    }
  }
}

Or use the pre-configured .mcp.json from comfyui-template.

Available Tools

System Tools

Tool Description
get_system_stats() Get ComfyUI server health: version, memory, device info
get_queue_status() Get current queue: running and pending jobs
get_history(limit=10) Get recent generation history (1-100 entries)
cancel_current(prompt_id=None) Interrupt current generation
clear_queue(delete_ids=None) Clear queue or delete specific items

Discovery Tools

Tool Description
list_nodes(filter=None) List available ComfyUI nodes (optional filter)
get_node_info(node_name) Get detailed node info: inputs, outputs, parameters
search_nodes(query) Search nodes by name, type, or category
list_models(folder="checkpoints") List models in a folder
list_model_folders() List available model folder types
list_embeddings() List available embeddings
list_extensions() List loaded extensions (custom node packs)
refresh_nodes() Refresh cached node list from ComfyUI

Workflow Management Tools

Tool Description
list_workflows() List available workflow files
load_workflow(workflow_name) Load a workflow from file
save_workflow(workflow, name, format="ui") Save workflow (format: "api" or "ui")
create_workflow() Create an empty workflow structure
add_node(workflow, node_id, class_type, inputs) Add a node to a workflow
remove_node(workflow, node_id) Remove a node from a workflow
update_node_input(workflow, node_id, input_name, value) Update a node's input
validate_workflow(workflow) Validate workflow structure and node types
convert_workflow_to_ui(workflow) Convert API format to UI/Litegraph format
list_templates() List available workflow templates
get_workflow_template(template_name) Get a pre-built workflow template
generate_workflow_name(words=2) Generate random funny workflow name

Execution Tools

Tool Description
generate_image(prompt) Generate image using default workflow (simple interface)
run_workflow(workflow_name, inputs=None, output_node_id=None) Execute a saved workflow file
execute_workflow(workflow, output_node_id) Execute an arbitrary workflow dict
submit_workflow(workflow) Submit workflow without waiting (returns prompt_id)
get_prompt_status(prompt_id) Get status of a submitted prompt
get_result_image(prompt_id, output_node_id) Get result image from completed prompt

Workflow Formats

ComfyUI uses two workflow formats. Understanding the difference is critical:

Format Structure Use Case Directory
API {"node_id": {"class_type": "...", "inputs": {...}}} MCP execution, automation workflows-api/
UI {"nodes": [...], "links": [...], "version": ...} ComfyUI editor only workflows-ui/

IMPORTANT:

  • Only API format workflows can be executed via MCP (run_workflow(), execute_workflow())
  • UI format workflows are for loading/editing in the ComfyUI web editor
  • The MCP server will reject UI format workflows with an error if you try to execute them

Format Detection

The server automatically detects format by checking for "nodes" or "version" keys (UI format) vs "class_type" keys (API format).

Creating, Validating, and Saving Workflows

Recommended Workflow Process

# 1. CREATE: Start with empty workflow or template
wf = create_workflow()
# Or use a template:
wf = get_workflow_template("fal-flux-dev")

# 2. BUILD: Add nodes with explicit connections
wf = add_node(wf, "1", "LoadImage", {"image": "input.jpg"})
wf = add_node(wf, "2", "LumaImageToVideoNode", {
    "prompt": "smooth camera motion",
    "model": "ray-2",
    "first_image": ["1", 0],  # Connect to node "1", output index 0
    "resolution": "1080p",
    "duration": "5s"
})
wf = add_node(wf, "3", "SaveVideo_fal", {
    "videos": ["2", 0],
    "filename_prefix": "output"
})

# 3. VALIDATE: Check structure and node types before saving
validation = validate_workflow(wf)
# Returns: {"valid": true/false, "errors": [...], "warnings": [...]}

# 4. SAVE: Choose format based on purpose
# For MCP execution (API format):
save_workflow(wf, "my-workflow", format="api")  # → workflows-api/my-workflow.json

# For ComfyUI editor (UI format):
save_workflow(wf, "my-workflow", format="ui")   # → workflows-ui/my-workflow.json

Node Connections

Connections use the format ["source_node_id", output_index]:

# Connect node "1" output slot 0 to this input
wf = add_node(wf, "2", "CLIPTextEncode", {
    "text": "my prompt",
    "clip": ["1", 0]  # ← Connection to node "1", first output
})

Discovering Node Parameters

Before adding a node, check its required inputs:

# Find available nodes
nodes = list_nodes(filter="Luma")  # → ["LumaImageToVideoNode", ...]

# Get node details
info = get_node_info("LumaImageToVideoNode")
# Returns:
# {
#   "input": {
#     "required": {
#       "prompt": ["STRING", {...}],
#       "model": [["ray-2", "ray-flash-2"], {...}],
#       "first_image": ["IMAGE"],
#       ...
#     },
#     "optional": {...}
#   },
#   "output": ["VIDEO"],
#   ...
# }

Validation Errors

Common validation issues:

Error Cause Fix
Unknown node type Node class doesn't exist Use list_nodes() to find correct name
Missing required input Required input not provided Check get_node_info() for required inputs
Invalid connection Source node/output doesn't exist Verify node IDs and output indices
UI format detected Trying to execute UI format Use API format or re-export from ComfyUI

Usage Examples

Simple Image Generation

# Using default workflow configuration
result = generate_image("a cyberpunk city at sunset")

Run a Named Workflow

# Execute saved workflow with custom inputs
result = run_workflow(
    "flux-dev.json",
    inputs={"6": {"text": "a forest landscape"}},
    output_node_id="9"
)

Build and Execute Custom Workflow

# 1. Create empty workflow
wf = create_workflow()

# 2. Add nodes
wf = add_node(wf, "1", "CheckpointLoaderSimple", {
    "ckpt_name": "flux-dev.safetensors"
})
wf = add_node(wf, "2", "CLIPTextEncode", {
    "text": "beautiful sunset over mountains",
    "clip": ["1", 1]  # Connect to checkpoint's CLIP output
})
wf = add_node(wf, "3", "KSampler", {
    "model": ["1", 0],
    "positive": ["2", 0],
    # ... other inputs
})

# 3. Validate before execution
validation = validate_workflow(wf)
if not validation.get("valid"):
    print(f"Errors: {validation.get('errors')}")

# 4. Execute
result = execute_workflow(wf, output_node_id="9")

Async Workflow Submission

# Submit without waiting
submission = submit_workflow(workflow)
prompt_id = submission["prompt_id"]

# Check status later
status = get_prompt_status(prompt_id)

# Get result when ready
if status["completed"]:
    image = get_result_image(prompt_id, "9")

Discover Available Nodes

# List all fal.ai nodes
nodes = list_nodes(filter="fal")

# Get details about a specific node
info = get_node_info("RemoteCheckpointLoader_fal")

Using fal.ai Connector

The ComfyUI-fal-Connector enables cloud GPU inference via fal.ai.

# 1. Verify fal.ai extension is loaded
extensions = list_extensions()
# Should include "ComfyUI-fal-Connector"

# 2. List available fal.ai nodes
fal_nodes = list_nodes(filter="fal")
# Returns: ["RemoteCheckpointLoader_fal", "StringInput_fal", "SaveImage_fal", ...]

# 3. Get node details
info = get_node_info("RemoteCheckpointLoader_fal")
# Shows available checkpoints: flux-dev, flux-schnell, sd3.5-large, etc.

# 4. Build a fal.ai workflow
wf = create_workflow()
wf = add_node(wf, "1", "RemoteCheckpointLoader_fal", {
    "ckpt_name": "flux-dev"
})
wf = add_node(wf, "2", "StringInput_fal", {
    "text": "a futuristic city at sunset, cyberpunk style"
})
wf = add_node(wf, "3", "CLIPTextEncode", {
    "text": ["2", 0],
    "clip": ["1", 1]
})
# ... add sampler, VAE decode, save image nodes

# 5. Execute on fal.ai cloud GPUs
result = execute_workflow(wf, output_node_id="9")

Environment Setup:

export FAL_KEY=your-fal-api-key

Architecture

comfy_mcp_server/
ā”œā”€ā”€ __init__.py      # Entry point, FastMCP server
ā”œā”€ā”€ api.py           # HTTP helpers, ComfyUI API functions
ā”œā”€ā”€ models.py        # Pydantic models for type safety
ā”œā”€ā”€ settings.py      # Configuration with pydantic-settings
ā”œā”€ā”€ compat.py        # Version compatibility layer
└── tools/           # MCP tool implementations
    ā”œā”€ā”€ system.py    # System monitoring tools
    ā”œā”€ā”€ discovery.py # Node/model discovery
    ā”œā”€ā”€ workflow.py  # Workflow management
    └── execution.py # Workflow execution

Development

# Install dev dependencies
uv sync --all-extras

# Run linting
uv run ruff check src/

# Run tests (requires running ComfyUI)
uv run pytest tests/

# Format code
uv run ruff format src/

ComfyUI API Coverage

Target: ComfyUI 0.3.x - 0.4.x

API Endpoint Method Description Status
/prompt POST Submit workflow for execution āœ… Implemented
/queue GET View running/pending jobs āœ… Implemented
/queue POST Clear queue / delete items āœ… Implemented
/history GET View generation history āœ… Implemented
/history/{id} GET Get specific job result āœ… Implemented
/history POST Delete history entries āš ļø Partial
/interrupt POST Stop current generation āœ… Implemented
/object_info GET List all available nodes āœ… Implemented
/object_info/{node} GET Get node parameters/inputs āœ… Implemented
/models GET List model folders āœ… Implemented
/models/{folder} GET List models in folder āœ… Implemented
/system_stats GET Server health/resources āœ… Implemented
/view GET Retrieve generated images āœ… Implemented
/embeddings GET List available embeddings āœ… Implemented
/extensions GET List loaded extensions āœ… Implemented
/upload/image POST Upload image for workflows āŒ Not implemented
/upload/mask POST Upload mask for inpainting āŒ Not implemented
/free POST Free VRAM/memory āŒ Not implemented
/api/userdata/* * User data management āŒ Not implemented

Implementation Notes

  • Partial: History deletion is not fully exposed as a tool
  • Not implemented: Image/mask upload, memory management, and user data APIs are planned for future releases

Compatibility

  • MCP Server Version: 0.2.0
  • Minimum ComfyUI: 0.3.0
  • Maximum Tested ComfyUI: 0.4.x
  • Python: 3.10+

The server includes a compatibility layer that handles API differences between ComfyUI versions and provides graceful degradation.

License

MIT License - see LICENSE file.

Credits

Originally forked from @lalanikarim/comfyui-mcp.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured