ComfyUI MCP Server
Enables AI agents to manage ComfyUI workflows using a human-readable Domain Specific Language (DSL), with automatic conversion to/from JSON format. Supports workflow creation, validation, execution, and monitoring through natural language interactions.
README
ComfyUI MCP Server
DSL-first workflow management for ComfyUI via Model Context Protocol (MCP)
A production-ready MCP server that enables AI agents to manage ComfyUI workflows using a human-readable Domain Specific Language (DSL). The core design philosophy is DSL-first: agents work entirely in DSL format, with JSON conversion happening transparently.
🚀 Quick Start
Installation
pip install comfy-mcp
Usage with Claude Code
- Create MCP configuration:
{
"mcpServers": {
"comfyui-workflows": {
"command": "comfy-mcp",
"args": [],
"env": {}
}
}
}
- Start Claude Code with MCP:
claude --mcp-config mcp_config.json
- Use in conversation:
"Execute this workflow: [paste DSL]"
"List workflows in examples directory"
"Show ComfyUI queue status"
✨ Features
🔄 DSL-First Design
- Agents work entirely in human-readable DSL
- Automatic JSON ↔ DSL conversion
- No need to think about format conversion
📁 File Operations
read_workflow- Auto-converts JSON to DSLwrite_workflow- Saves DSL as JSON/DSLlist_workflows- Discovers workflow filesvalidate_workflow- DSL syntax validationget_workflow_info- Workflow analysis
⚡ Execution Operations
execute_workflow- Run DSL workflows on ComfyUIget_job_status- Monitor execution & download imageslist_comfyui_queue- View ComfyUI queue status
🎨 DSL Syntax Example
## Model Loading
checkpoint: CheckpointLoaderSimple
ckpt_name: sd_xl_base_1.0.safetensors
## Text Conditioning
positive: CLIPTextEncode
text: a beautiful landscape, detailed, photorealistic
clip: @checkpoint.clip
negative: CLIPTextEncode
text: blurry, low quality
clip: @checkpoint.clip
## Generation
latent: EmptyLatentImage
width: 1024
height: 1024
sampler: KSampler
model: @checkpoint.model
positive: @positive.conditioning
negative: @negative.conditioning
latent_image: @latent.latent
seed: 42
steps: 20
## Output
decode: VAEDecode
samples: @sampler.latent
vae: @checkpoint.vae
save: SaveImage
images: @decode.image
filename_prefix: output
🏗️ Architecture
┌─────────────────┐ ┌──────────────┐ ┌─────────────┐
│ AI Agent │────│ MCP Server │────│ ComfyUI │
│ (Claude) │ │ │ │ Server │
└─────────────────┘ └──────────────┘ └─────────────┘
│ │ │
│ DSL Workflows │ JSON API │
│ │ │
▼ ▼ ▼
Natural Language ────► DSL Parser ────► JSON Converter
Key Components:
- DSL Parser: Converts human-readable DSL to Abstract Syntax Tree
- JSON Converter: Bidirectional conversion between DSL and ComfyUI JSON
- MCP Server: Exposes tools via Model Context Protocol
- Execution Engine: Integrates with ComfyUI API for workflow execution
📖 Documentation
Core Classes
DSLParser: Parse DSL text into Abstract Syntax TreeDslToJsonConverter: Convert DSL AST to ComfyUI JSONJsonToDslConverter: Convert ComfyUI JSON to DSL AST
MCP Tools
| Tool | Description | Example |
|---|---|---|
read_workflow |
Read and convert workflows to DSL | read_workflow("workflow.json") |
write_workflow |
Write DSL to disk as JSON/DSL | write_workflow("output.json", dsl) |
list_workflows |
Find workflow files | list_workflows("./workflows") |
validate_workflow |
Check DSL syntax | validate_workflow(dsl_content) |
get_workflow_info |
Analyze structure | get_workflow_info(dsl_content) |
execute_workflow |
Run on ComfyUI | execute_workflow(dsl_content) |
get_job_status |
Monitor execution | get_job_status(prompt_id) |
list_comfyui_queue |
View queue | list_comfyui_queue() |
🛠️ Development
Setup
git clone https://github.com/christian-byrne/comfy-mcp.git
cd comfy-mcp
pip install -e ".[dev]"
pre-commit install
Testing
# Run all tests
pytest
# Run with coverage
pytest --cov=comfy_mcp --cov-report=html
# Run specific test types
pytest -m unit
pytest -m integration
pytest -m "not slow"
Code Quality
# Format code
black .
# Lint code
ruff check .
# Type checking
mypy comfy_mcp
Documentation
cd docs
make html
🔧 Configuration
Environment Variables
COMFYUI_SERVER: ComfyUI server address (default:127.0.0.1:8188)MCP_DEBUG: Enable debug loggingMCP_LOG_LEVEL: Set log level (DEBUG, INFO, WARNING, ERROR)
ComfyUI Setup
- Install ComfyUI
- Start server:
python main.py --listen 0.0.0.0 - Ensure models are installed in
models/checkpoints/
🤝 Contributing
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
Development Workflow
- Fork the repository
- Create a feature branch:
git checkout -b feature-name - Make changes and add tests
- Run tests and linting:
pytest && black . && ruff check . - Submit a pull request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- ComfyUI - Amazing stable diffusion GUI
- FastMCP - Excellent MCP framework
- Anthropic - Model Context Protocol specification
📈 Roadmap
- [ ] v0.2.0: Enhanced DSL features (templates, macros)
- [ ] v0.3.0: Web UI for workflow management
- [ ] v0.4.0: Git integration for workflow versioning
- [ ] v0.5.0: ComfyUI node discovery and documentation
- [ ] v1.0.0: Production deployment features
Built with ❤️ for the ComfyUI and AI automation community
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.