Codify MCP
Easily create custom reusable automation tools from casual browser actions using Apify Agent. Automate workflows by running your recorded actions turned into MCP tools.
README
Codify MCP
MCP server for custom automation tools using Apify Agent
Part of Project Codify
Project Codify
Complete end-to-end browser automation pipeline running inside browser (or locally). Codify and replay browser actions as robust (deterministic) and reusable scripts. From rapid prototyping and quick automation scripts to sophisticated deployments at scale.
-
Login - reusable authentication sessions - reusable secure login (TBD) ☑️
-
Agent - turn scripts into browser actions - code or text script (future) ✅
-
Coder - turn browser actions into scripts (TBD - currently integrated) ✅
-
Robot - automation engine for scalability (TBD - currently integrated) ✅
-
MCP - automations become reusable tools you can reuse through AI ✅
More is on the way... Give it a shot 🎬 or join the list to follow the project! 🔔
What It Does
Model Context Protocol (MCP) server that lets AI assistants (e.g. Claude, Cursor, VS Code) execute browser automation tasks via Apify Agent. Tools are passed as clean JSON arguments — one per line. No manual setup or file creation.
Usage
Run directly using npx:
npx codify-mcp {{JSON_MCP_TOOL_1}} {{JSON_MCP_TOOL_2}} {{JSON_MCP_TOOL_3}}...
Or install locally:
npm install -g codify-mcp
Quick Start
1. Apify Token
Optional - you can also place the token inside the MCP server JSON later.
apify login
This saves your token to ~/.apify/auth.json.
Alternatively, set the environment variable:
export APIFY_TOKEN="your_token_here"
2. Create a Tool
Apify Coder can turn casual browser actions into reusable AI tools. Currently, this feature is also integrated in Apify Agent
Export a tool and append the result as a JSON string to the MCP server args field or ask your AI to do it for you.
{
"name": "scrape_product",
"description": "Scrape product info from a page",
"inputSchema": {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "Product page URL"
}
},
"required": ["url"]
},
"implementation": {
"type": "apify-actor",
"actorId": "cyberfly/apify-agent",
"script": "await page.goto(inputs.url); const title = await page.textContent('h1'); return {title};"
}
}
3. Run the Server
npx codify-mcp '{"name":"scrape_product","description":"...","inputSchema":{...},"implementation":{...}}'
Or with multiple tools:
npx codify-mcp \
'{"name":"tool1",...}' \
'{"name":"tool2",...}' \
'{"name":"tool3",...}'
4. Connect to Claude Desktop (or Cursor/VS Code)
Edit your Claude Desktop config:
macOS/Linux: ~/.config/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"apify-agent": {
"command": "npx",
"args": [
"codify-mcp",
"{\"name\":\"scrape_product\",\"description\":\"...\",\"inputSchema\":{...},\"implementation\":{...}}"
],
"env": {
"APIFY_TOKEN": "your_token_or_leave_empty_to_use_auth_file"
}
}
}
}
Restart Claude. Your tools are now available to the AI assistant.
Tool Definition Reference
Basic Structure
{
// Required
"name": "tool_name", // alphanumeric + underscore/dash
"description": "What the tool does", // shown to AI
"inputSchema": {
"type": "object",
"properties": {
"paramName": {
"type": "string",
"description": "Parameter description"
}
},
"required": ["paramName"]
},
"implementation": {
"type": "apify-actor",
"actorId": "cyberfly/apify-agent", // actor to run
"script": "await page.goto(inputs.url); ..." // Playwright code
},
// Optional
"version": "1.0.0",
"metadata": { "custom": "fields" }
}
Implementation Details
- script: Playwright automation code. Receives
inputsobject with user-provided parameters andpageobject for browser automation. - actorId: Apify actor to execute. Defaults to
cyberfly/apify-agent.
Input Schema Examples
Simple text input:
{
"url": {
"type": "string",
"description": "Website URL"
}
}
Optional field:
{
"timeout": {
"type": "integer",
"description": "Timeout in seconds",
"default": 30
}
}
Enum (dropdown):
{
"format": {
"type": "string",
"enum": ["json", "csv", "markdown"],
"description": "Output format"
}
}
Usage Patterns
Single Tool (Development)
npx codify-mcp '{"name":"test","description":"Test tool","inputSchema":{"type":"object","properties":{}},"implementation":{"type":"apify-actor","script":"console.log('hello')"}}'
Multiple Tools (Production)
npx codify-mcp \
"$(cat tools/scraper.json)" \
"$(cat tools/logger.json)" \
"$(cat tools/analyzer.json)"
With Environment Variable
APIFY_TOKEN="apk_..." npx codify-mcp '{"name":"...","description":"...","inputSchema":{},"implementation":{"type":"apify-actor","script":"..."}}'
With npm link (Local Testing)
cd /path/to/codify-mcp
npm link
# Now use anywhere
codify-mcp '{"name":"...","description":"...","inputSchema":{},"implementation":{"type":"apify-actor","script":"..."}}'
Authentication
Token resolution order:
- APIFY_TOKEN environment variable (if set and not empty)
- ~/.apify/auth.json (from
apify loginCLI command) - Error: No token found, tool execution will fail with clear message
Troubleshooting
"No valid tools in arguments"
Ensure you're passing valid JSON strings as arguments:
# ✓ Correct
npx codify-mcp '{"name":"test","description":"Test","inputSchema":{"type":"object","properties":{}},"implementation":{"type":"apify-actor","script":"return {ok:true}"}}'
# ✗ Wrong (missing quotes around JSON)
npx codify-mcp {name:"test"...}
# ✗ Wrong (single quotes around JSON on Linux/Mac may need escaping)
npx codify-mcp '{name:"test"...}' # Use double quotes inside
"Invalid or missing Apify token"
Ensure authentication is set up:
# Option 1: Login via CLI
apify login
# Option 2: Set environment variable
export APIFY_TOKEN="apk_your_token_here"
apify token
"Tool execution failed"
Check your Playwright script syntax. The script must be valid JavaScript that:
- Has access to
inputs(user-provided parameters) - Has access to
page(Playwright page object) - Returns a value or object
// ✓ Valid
await page.goto(inputs.url);
const title = await page.textContent('h1');
return { title };
// ✗ Invalid (missing await)
page.goto(inputs.url);
Large Tool Sets (50+ tools)
If you have many tools, consider splitting into multiple MCP servers:
{
"mcpServers": {
"apify-scraper": {
"command": "npx",
"args": ["codify-mcp", "...tool1...", "...tool2..."]
},
"apify-analyzer": {
"command": "npx",
"args": ["codify-mcp", "...tool3...", "...tool4..."]
}
}
}
Development
Running Locally
npm link
codify-mcp '{"name":"test",...}'
Structure
lib/
index.js # Main entry: assembleWrapperCode(), start()
mcp/
resolver.js # Module path bootstrapping
auth.js # Token resolution
actor_caller.js # Apify actor execution
server_setup.js # MCP server + tool registration
bin/
start.js # Executable entry point (bin field in package.json)
Key Design Principles
- No files: Tools passed entirely via argv; no config files or manual setup.
- No base64: Clean, readable command lines; no obfuscation.
- Self-contained: All dependencies bundled; works offline once installed.
- Stateless: Each invocation is independent; easy horizontal scaling.
- Token from env/CLI: Seamless auth experience; respects Apify ecosystem conventions.
License
Apache-2.0
Contributing
Issues and PRs welcome at github.com/cybairfly/apify-agent
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.