CodeRAG
A high-performance MCP server providing lightning-fast hybrid code search using TF-IDF and vector embeddings for AI assistants. It enables real-time codebase indexing and semantic retrieval with sub-50ms latency and offline support.
README
<div align="center">
CodeRAG
Lightning-fast hybrid code search for AI assistants
Zero dependencies • <50ms search • Hybrid TF-IDF + Vector • MCP ready
Quick Start • Features • MCP Setup • API
</div>
Why CodeRAG?
Traditional code search tools are either slow (full-text grep), inaccurate (keyword matching), or complex (require external services).
CodeRAG is different:
❌ Old way: Docker + ChromaDB + Ollama + 30 second startup
✅ CodeRAG: npx @sylphx/coderag-mcp (instant)
| Feature | grep/ripgrep | Cloud RAG | CodeRAG |
|---|---|---|---|
| Semantic understanding | ❌ | ✅ | ✅ |
| Zero external deps | ✅ | ❌ | ✅ |
| Offline support | ✅ | ❌ | ✅ |
| Startup time | Instant | 10-30s | <1s |
| Search latency | ~100ms | ~500ms | <50ms |
✨ Features
Search
- 🔍 Hybrid Search - TF-IDF + optional vector embeddings
- 🧠 StarCoder2 Tokenizer - Code-aware tokenization (4.7MB, trained on code)
- 📊 Smoothed IDF - No term gets ignored, stable ranking
- ⚡ <50ms Latency - Instant results even on large codebases
Indexing
- 🚀 1000-2000 files/sec - Fast initial indexing
- 💾 SQLite Persistence - Instant startup (<100ms) with cached index
- ⚡ Incremental Updates - Smart diff detection, no full rebuilds
- 👁️ File Watching - Real-time index updates on file changes
Integration
- 📦 MCP Server - Works with Claude Desktop, Cursor, VS Code, Windsurf
- 🧠 Vector Search - Optional OpenAI embeddings for semantic search
- 🌳 AST Chunking - Smart code splitting using Synth parsers (15+ languages)
- 💻 Low Memory Mode - SQL-based search for resource-constrained environments
🚀 Quick Start
Option 1: MCP Server (Recommended for AI Assistants)
npx @sylphx/coderag-mcp --root=/path/to/project
Or add to your MCP config:
{
"mcpServers": {
"coderag": {
"command": "npx",
"args": ["-y", "@sylphx/coderag-mcp", "--root=/path/to/project"]
}
}
}
See MCP Server Setup for Claude Desktop, Cursor, VS Code, etc.
Option 2: As a Library
npm install @sylphx/coderag
# or
bun add @sylphx/coderag
import { CodebaseIndexer, PersistentStorage } from '@sylphx/coderag'
// Create indexer with persistent storage
const storage = new PersistentStorage({ codebaseRoot: './my-project' })
const indexer = new CodebaseIndexer({
codebaseRoot: './my-project',
storage,
})
// Index codebase (instant on subsequent runs)
await indexer.index({ watch: true })
// Search
const results = await indexer.search('authentication logic', { limit: 10 })
console.log(results)
// [{ path: 'src/auth/login.ts', score: 0.87, matchedTerms: ['authentication', 'logic'], snippet: '...' }]
📦 Packages
| Package | Description | Install |
|---|---|---|
| @sylphx/coderag | Core search library | npm i @sylphx/coderag |
| @sylphx/coderag-mcp | MCP server for AI assistants | npx @sylphx/coderag-mcp |
🔌 MCP Server Setup
Claude Desktop
Add to claude_desktop_config.json:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"coderag": {
"command": "npx",
"args": ["-y", "@sylphx/coderag-mcp", "--root=/path/to/project"]
}
}
}
Cursor
Add to ~/.cursor/mcp.json (macOS) or %USERPROFILE%\.cursor\mcp.json (Windows):
{
"mcpServers": {
"coderag": {
"command": "npx",
"args": ["-y", "@sylphx/coderag-mcp", "--root=/path/to/project"]
}
}
}
VS Code
Add to VS Code settings (JSON) or .vscode/mcp.json:
{
"mcp": {
"servers": {
"coderag": {
"command": "npx",
"args": ["-y", "@sylphx/coderag-mcp", "--root=${workspaceFolder}"]
}
}
}
}
Windsurf
Add to ~/.codeium/windsurf/mcp_config.json:
{
"mcpServers": {
"coderag": {
"command": "npx",
"args": ["-y", "@sylphx/coderag-mcp", "--root=/path/to/project"]
}
}
}
Claude Code
claude mcp add coderag -- npx -y @sylphx/coderag-mcp --root=/path/to/project
🛠️ MCP Tool: codebase_search
Search project source files with hybrid TF-IDF + vector ranking.
Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
query |
string | Yes | - | Search query |
limit |
number | No | 10 | Max results |
include_content |
boolean | No | true | Include code snippets |
file_extensions |
string[] | No | - | Filter by extension (e.g., [".ts", ".tsx"]) |
path_filter |
string | No | - | Filter by path pattern |
exclude_paths |
string[] | No | - | Exclude paths (e.g., ["node_modules", "dist"]) |
Example
{
"query": "user authentication login",
"limit": 5,
"file_extensions": [".ts", ".tsx"],
"exclude_paths": ["node_modules", "dist", "test"]
}
Response Format
LLM-optimized output (minimal tokens, maximum content):
# Search: "user authentication login" (3 results)
## src/auth/login.ts:15-28
```typescript
15: export async function authenticate(credentials) {
16: const user = await findUser(credentials.email)
17: return validatePassword(user, credentials.password)
18: }
src/middleware/auth.ts:42-55 [md→typescript]
42: // Embedded code from markdown docs
43: const authMiddleware = (req, res, next) => {
src/utils/large.ts:1-200 [truncated]
1: // First 70% shown...
... [800 chars truncated] ...
195: // Last 20% shown
---
## 📚 API Reference
### `CodebaseIndexer`
Main class for indexing and searching.
```typescript
import { CodebaseIndexer, PersistentStorage } from '@sylphx/coderag'
const storage = new PersistentStorage({ codebaseRoot: './project' })
const indexer = new CodebaseIndexer({
codebaseRoot: './project',
storage,
maxFileSize: 1024 * 1024, // 1MB default
})
// Index with file watching
await indexer.index({ watch: true })
// Search with options
const results = await indexer.search('query', {
limit: 10,
includeContent: true,
fileExtensions: ['.ts', '.js'],
excludePaths: ['node_modules'],
})
// Stop watching
await indexer.stopWatch()
PersistentStorage
SQLite-backed storage for instant startup.
import { PersistentStorage } from '@sylphx/coderag'
const storage = new PersistentStorage({
codebaseRoot: './project', // Creates .coderag/ folder
dbPath: './custom.db', // Optional custom path
})
Low-Level TF-IDF Functions
import { buildSearchIndex, searchDocuments, initializeTokenizer } from '@sylphx/coderag'
// Initialize StarCoder2 tokenizer (4.7MB, one-time download)
await initializeTokenizer()
// Build index
const documents = [
{ uri: 'file://auth.ts', content: 'export function authenticate...' },
{ uri: 'file://user.ts', content: 'export class User...' },
]
const index = await buildSearchIndex(documents)
// Search
const results = await searchDocuments('authenticate user', index, { limit: 5 })
Vector Search (Optional)
For semantic search with embeddings:
import { hybridSearch, createEmbeddingProvider } from '@sylphx/coderag'
// Requires OPENAI_API_KEY environment variable
const results = await hybridSearch('authentication flow', indexer, {
vectorWeight: 0.7, // 70% vector, 30% TF-IDF
limit: 10,
})
⚙️ Configuration
MCP Server Options
| Option | Default | Description |
|---|---|---|
--root=<path> |
Current directory | Codebase root path |
--max-size=<bytes> |
1048576 (1MB) | Max file size to index |
--no-auto-index |
false | Disable auto-indexing on startup |
Environment Variables
| Variable | Description |
|---|---|
OPENAI_API_KEY |
Enable vector search with OpenAI embeddings |
OPENAI_BASE_URL |
Custom OpenAI-compatible endpoint |
EMBEDDING_MODEL |
Embedding model (default: text-embedding-3-small) |
EMBEDDING_DIMENSIONS |
Custom embedding dimensions |
📊 Performance
| Metric | Value |
|---|---|
| Initial indexing | ~1000-2000 files/sec |
| Startup with cache | <100ms |
| Search latency | <50ms |
| Memory per 1000 files | ~1-2 MB |
| Tokenizer size | 4.7MB (StarCoder2) |
Benchmarks
Tested on MacBook Pro M1, 16GB RAM:
| Codebase | Files | Index Time | Search Time |
|---|---|---|---|
| Small (100 files) | 100 | 0.5s | <10ms |
| Medium (1000 files) | 1,000 | 2s | <30ms |
| Large (10000 files) | 10,000 | 15s | <50ms |
🏗️ Architecture
coderag/
├── packages/
│ ├── core/ # @sylphx/coderag
│ │ ├── src/
│ │ │ ├── indexer.ts # Main indexer with file watching
│ │ │ ├── tfidf.ts # TF-IDF with StarCoder2 tokenizer
│ │ │ ├── code-tokenizer.ts # StarCoder2 tokenization
│ │ │ ├── hybrid-search.ts # Vector + TF-IDF fusion
│ │ │ ├── incremental-tfidf.ts # Smart incremental updates
│ │ │ ├── storage-persistent.ts # SQLite storage
│ │ │ ├── vector-storage.ts # LanceDB vector storage
│ │ │ ├── embeddings.ts # OpenAI embeddings
│ │ │ ├── ast-chunking.ts # Synth AST chunking
│ │ │ └── language-config.ts # Language registry (15+ languages)
│ │ └── package.json
│ │
│ └── mcp-server/ # @sylphx/coderag-mcp
│ ├── src/
│ │ └── index.ts # MCP server
│ └── package.json
How It Works
- Indexing: Scans codebase, tokenizes with StarCoder2, builds TF-IDF index
- AST Chunking: Splits code at semantic boundaries (functions, classes, etc.)
- Storage: Persists to SQLite (
.coderag/folder) for instant startup - Watching: Detects file changes, performs incremental updates
- Search: Hybrid TF-IDF + optional vector search with score fusion
Supported Languages
AST-based chunking with semantic boundary detection:
| Category | Languages |
|---|---|
| JavaScript | JavaScript, TypeScript, JSX, TSX |
| Systems | Python, Go, Java, C |
| Markup | Markdown, HTML, XML |
| Data/Config | JSON, YAML, TOML, INI |
| Other | Protobuf |
Embedded Code Support: Automatically parses code blocks in Markdown and <script>/<style> tags in HTML.
🔧 Development
# Clone
git clone https://github.com/SylphxAI/coderag.git
cd coderag
# Install
bun install
# Build
bun run build
# Test
bun run test
# Lint & Format
bun run lint
bun run format
🤝 Contributing
Contributions are welcome! Please:
- Open an issue to discuss changes
- Fork and create a feature branch
- Run
bun run lintandbun run test - Submit a pull request
📄 License
MIT © Sylphx
<div align="center">
Powered by Sylphx
Built with @sylphx/synth • @sylphx/mcp-server-sdk • @sylphx/doctor • @sylphx/bump
</div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.