Codebase MCP Server
Enables AI assistants to semantically search and understand code repositories using PostgreSQL with pgvector embeddings. Provides repository indexing, natural language code search, and development task management with git integration.
README
Codebase MCP Server
A production-grade MCP (Model Context Protocol) server that indexes code repositories into PostgreSQL with pgvector for semantic search, designed specifically for AI coding assistants.
Overview
The Codebase MCP Server provides semantic code search capabilities through a focused, local-first architecture. It enables AI assistants to understand and navigate codebases efficiently by combining tree-sitter AST parsing with vector embeddings.
Key Features
- Semantic Code Search: Natural language queries across indexed repositories
- Repository Indexing: Fast scanning and chunking with tree-sitter parsers
- Task Management: Development task tracking with git integration
- MCP Protocol: Six focused tools via Server-Sent Events (SSE) and stdio (JSON-RPC)
- Performance Guaranteed: 60-second indexing for 10K files, 500ms p95 search latency
- Production Ready: Comprehensive error handling, structured logging, type safety
MCP Tools
- search_code: Semantic search across indexed code
- index_repository: Index a repository for searching
- get_task: Retrieve a specific development task
- list_tasks: List tasks with filtering options
- create_task: Create a new development task
- update_task: Update task status with git integration
Quick Start
1. Database Setup
# Create database
createdb codebase_mcp
# Initialize schema
psql -d codebase_mcp -f db/init_tables.sql
2. Install Dependencies
# Install dependencies including FastMCP framework
uv sync
# Or with pip
pip install -r requirements.txt
Key Dependencies:
fastmcp>=0.1.0- Modern MCP framework with decorator-based toolsanthropic-mcp- MCP protocol implementationsqlalchemy>=2.0- Async ORMpgvector- PostgreSQL vector extensionollama- Embedding generation
3. Configure Claude Desktop
Edit ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"codebase-mcp": {
"command": "uv",
"args": [
"run",
"--with",
"fastmcp",
"python",
"/absolute/path/to/codebase-mcp/server_fastmcp.py"
]
}
}
}
Important:
- Use absolute paths!
- Server uses FastMCP framework with decorator-based tool definitions
- All logs go to
/tmp/codebase-mcp.log(no stdout/stderr pollution)
4. Start Ollama
ollama serve
ollama pull nomic-embed-text
5. Test
# Test database and tools
uv run python tests/test_tool_handlers.py
# Test repository indexing
uv run python tests/test_embeddings.py
Current Status
Working Tools (6/6) ✅
| Tool | Status | Description |
|---|---|---|
create_task |
✅ Working | Create development tasks with planning references |
get_task |
✅ Working | Retrieve task by ID |
list_tasks |
✅ Working | List tasks with filters (status, branch) |
update_task |
✅ Working | Update tasks with git tracking (branch, commit) |
index_repository |
✅ Working | Index code repositories with semantic chunking |
search_code |
✅ Working | Semantic code search with pgvector similarity |
Recent Fixes (Oct 6, 2025)
- ✅ Parameter passing architecture (Pydantic models)
- ✅ MCP schema mismatches (status enums, missing parameters)
- ✅ Timezone/datetime compatibility (PostgreSQL)
- ✅ Binary file filtering (images, cache dirs)
Test Results
✅ Task Management: 7/7 tests passed
✅ Repository Indexing: 2 files indexed, 6 chunks created
✅ Embeddings: 100% coverage (768-dim vectors)
✅ Database: Connection pooling, async operations working
Tool Usage Examples
Create a Task
In Claude Desktop:
Create a task called "Implement user authentication" with description "Add JWT-based authentication to the API"
Response:
{
"id": "550e8400-e29b-41d4-a716-446655440000",
"title": "Implement user authentication",
"description": "Add JWT-based authentication to the API",
"status": "need to be done",
"created_at": "2025-10-06T21:30:00",
"planning_references": []
}
Index a Repository
Index the repository at /Users/username/projects/myapp
Response:
{
"repository_id": "abc123...",
"files_indexed": 234,
"chunks_created": 1456,
"duration_seconds": 12.5,
"status": "success"
}
Search Code
Search for "authentication middleware" in Python files
Response:
{
"results": [
{
"file_path": "src/middleware/auth.py",
"content": "def authenticate_request(request):\n ...",
"start_line": 45,
"similarity_score": 0.92
}
],
"total_count": 5,
"latency_ms": 250
}
Track Task with Git
Update task abc123 to status "in-progress" and link it to branch "feature/auth"
Response:
{
"id": "abc123...",
"status": "in-progress",
"branches": ["feature/auth"],
"commits": []
}
Architecture
Claude Desktop ↔ FastMCP Server ↔ Tool Handlers ↔ Services ↔ PostgreSQL
↓
Ollama (embeddings)
MCP Framework: Built with FastMCP - a modern, decorator-based framework for building MCP servers with:
- Type-safe tool definitions via
@mcp.tool()decorators - Automatic JSON Schema generation from Pydantic models
- Dual logging (file + MCP protocol) without stdout pollution
- Async/await support throughout
See ARCHITECTURE.md for detailed component diagrams.
Documentation
- docs/status/MCP_SERVER_STATUS.md - Current status, test results, configuration
- docs/status/SESSION_HANDOFF.md - Recent problems solved, current working state
- docs/guides/SETUP_GUIDE.md - Complete setup instructions with troubleshooting
- docs/ARCHITECTURE.md - System architecture and data flow
- CLAUDE.md - Specify workflow for AI-assisted development
Database Schema
11 tables with pgvector for semantic search:
Core Tables:
repositories- Indexed repositoriescode_files- Source files with metadatacode_chunks- Semantic chunks with embeddings (vector(768))tasks- Development tasks with git trackingtask_status_history- Audit trail
See docs/ARCHITECTURE.md for complete schema documentation.
Technology Stack
- MCP Framework: FastMCP 0.1+ (decorator-based tool definitions)
- Server: Python 3.13+, FastAPI patterns, async/await
- Database: PostgreSQL 14+ with pgvector extension
- Embeddings: Ollama (nomic-embed-text, 768 dimensions)
- ORM: SQLAlchemy 2.0 (async), Pydantic V2 for validation
- Type Safety: Full mypy --strict compliance
Development
Running Tests
# Tool handlers
uv run python tests/test_tool_handlers.py
# Repository indexing
uv run python tests/test_embeddings.py
# Unit tests
uv run pytest tests/ -v
Code Structure
codebase-mcp/
├── server_fastmcp.py # FastMCP server entry point (NEW)
├── src/
│ ├── mcp/
│ │ └── tools/ # Tool handlers with service integration
│ │ ├── tasks.py # Task management
│ │ ├── indexing.py # Repository indexing
│ │ └── search.py # Semantic search
│ ├── services/ # Business logic layer
│ │ ├── tasks.py # Task CRUD + git tracking
│ │ ├── indexer.py # Indexing orchestration
│ │ ├── scanner.py # File discovery
│ │ ├── chunker.py # AST-based chunking
│ │ ├── embedder.py # Ollama integration
│ │ └── searcher.py # pgvector similarity search
│ └── models/ # Database models + Pydantic schemas
│ ├── task.py # Task, TaskCreate, TaskUpdate
│ ├── code_chunk.py # CodeChunk
│ └── ...
└── tests/
├── test_tool_handlers.py # Integration tests
└── test_embeddings.py # Embedding validation
FastMCP Server Architecture:
server_fastmcp.py- Main entry point using@mcp.tool()decorators- Tool handlers in
src/mcp/tools/provide service integration - Services in
src/services/contain all business logic - Dual logging: file (
/tmp/codebase-mcp.log) + MCP protocol
Prerequisites
System Requirements
- Python 3.11+ (3.13 compatible)
- PostgreSQL 14+ with pgvector extension
- Ollama for embedding generation
- 4GB+ RAM recommended
- SSD storage for optimal performance
PostgreSQL with pgvector
# Install PostgreSQL 14+
# macOS
brew install postgresql@14
brew services start postgresql@14
# Ubuntu/Debian
sudo apt-get update
sudo apt-get install postgresql-14 postgresql-contrib-14
# Install pgvector extension
# macOS
brew install pgvector
# Ubuntu/Debian
sudo apt install postgresql-14-pgvector
# Enable pgvector in your database
psql -U postgres -c "CREATE EXTENSION IF NOT EXISTS vector;"
Ollama Setup
# Install Ollama
# macOS
brew install ollama
# Linux
curl -fsSL https://ollama.com/install.sh | sh
# Start Ollama service
ollama serve
# Pull required embedding model
ollama pull nomic-embed-text
Installation
1. Clone the Repository
git clone https://github.com/cliffclarke/codebase-mcp.git
cd codebase-mcp
2. Create Virtual Environment
# Create virtual environment
python3.11 -m venv .venv
# Activate virtual environment
# macOS/Linux
source .venv/bin/activate
# Windows
.venv\Scripts\activate
3. Install Dependencies
# Install production dependencies (includes FastMCP)
pip install -r requirements.txt
# For development (includes testing and linting tools)
pip install -r requirements-dev.txt
# Or with uv (recommended)
uv sync
Key Dependencies Installed:
fastmcp>=0.1.0- Modern MCP frameworksqlalchemy>=2.0- Async database ORMpgvector- PostgreSQL vector extension Python bindingsollama- Embedding generation clientpydantic>=2.0- Data validation and settings
4. Configure Environment
# Copy example environment file
cp .env.example .env
# Edit .env with your configuration
nano .env
Environment Variables:
# Database Configuration
DATABASE_URL=postgresql+asyncpg://user:password@localhost:5432/codebase_mcp
# Ollama Configuration
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_EMBEDDING_MODEL=embeddinggemma
# Performance Tuning
EMBEDDING_BATCH_SIZE=50 # Batch size for embedding generation
MAX_CONCURRENT_REQUESTS=10 # Max parallel Ollama requests
# Logging
LOG_LEVEL=INFO # DEBUG, INFO, WARNING, ERROR
LOG_FILE=/tmp/codebase-mcp.log # Log file location
Database Setup
1. Create Database
# Connect to PostgreSQL
psql -U postgres
# Create database
CREATE DATABASE codebase_mcp;
# Enable pgvector extension
\c codebase_mcp
CREATE EXTENSION IF NOT EXISTS vector;
\q
2. Initialize Schema
# Run database initialization script
python scripts/init_db.py
# Verify schema creation
alembic current
The initialization script will:
- Create all required tables (repositories, files, chunks, tasks)
- Set up vector indexes for similarity search
- Configure connection pooling
- Apply all database migrations
3. Verify Setup
# Check database connectivity
python -c "from src.database import Database; import asyncio; asyncio.run(Database.create_pool())"
# Run migration status check
alembic current
4. Database Reset & Cleanup
During development, you may need to reset your database. See DATABASE_RESET.md for three reset options:
- scripts/clear_data.sh - Clear all data, keep schema (fastest, no restart needed)
- scripts/reset_database.sh - Drop and recreate all tables (recommended for schema changes)
- scripts/nuclear_reset.sh - Drop entire database (requires Claude Desktop restart)
# Quick data wipe (keeps schema)
./scripts/clear_data.sh
# Full table reset (recommended)
./scripts/reset_database.sh
# Nuclear option (drops database)
./scripts/nuclear_reset.sh
Running the Server
FastMCP Server (Recommended)
The primary way to run the server is via Claude Desktop or other MCP clients:
# Via Claude Desktop (configured in claude_desktop_config.json)
# Server starts automatically when Claude Desktop launches
# Manual testing with FastMCP CLI
uv run --with fastmcp python server_fastmcp.py
# With custom log level
LOG_LEVEL=DEBUG uv run --with fastmcp python server_fastmcp.py
Server Entry Point: server_fastmcp.py in repository root
Logging: All output goes to /tmp/codebase-mcp.log (configurable via LOG_FILE env var)
Development Mode (Legacy FastAPI)
# Start with auto-reload (if FastAPI server exists)
uvicorn src.main:app --reload --host 127.0.0.1 --port 3000
# With custom log level
LOG_LEVEL=DEBUG uvicorn src.main:app --reload
Production Mode (Legacy)
# Start production server
uvicorn src.main:app --host 0.0.0.0 --port 3000 --workers 4
# With gunicorn (recommended for production)
gunicorn src.main:app -w 4 -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:3000
stdio Transport (Legacy CLI Mode)
The legacy MCP server supports stdio transport for CLI clients via JSON-RPC 2.0 over stdin/stdout.
# Start stdio server (reads JSON-RPC from stdin)
python -m src.mcp.stdio_server
# Echo a single request
echo '{"jsonrpc":"2.0","id":1,"method":"list_tasks","params":{"limit":5}}' | python -m src.mcp.stdio_server
# Pipe requests from a file (one JSON-RPC request per line)
cat requests.jsonl | python -m src.mcp.stdio_server
# Interactive mode (type JSON-RPC requests manually)
python -m src.mcp.stdio_server
{"jsonrpc":"2.0","id":1,"method":"get_task","params":{"task_id":"..."}}
JSON-RPC 2.0 Request Format:
{
"jsonrpc": "2.0",
"id": 1,
"method": "search_code",
"params": {
"query": "async def",
"limit": 10
}
}
JSON-RPC 2.0 Response Format:
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"results": [...],
"total_count": 42,
"latency_ms": 250
}
}
Available Methods:
search_code- Semantic code searchindex_repository- Index a repositoryget_task- Get task by IDlist_tasks- List tasks with filterscreate_task- Create new taskupdate_task- Update task status
Logging:
All logs go to /tmp/codebase-mcp.log (configurable via LOG_FILE env var). No stdout/stderr pollution - only JSON-RPC protocol messages on stdout.
Health Check
# Check server health
curl http://localhost:3000/health
# Expected response:
{
"status": "healthy",
"database": "connected",
"ollama": "connected",
"version": "0.1.0"
}
Usage Examples
1. Index a Repository
# Via MCP protocol
{
"tool": "index_repository",
"arguments": {
"path": "/path/to/your/repo",
"name": "My Project",
"force_reindex": false
}
}
# Response
{
"repository_id": "uuid-here",
"files_indexed": 150,
"chunks_created": 1200,
"duration_seconds": 45.3,
"status": "success"
}
2. Search Code
# Search for authentication logic
{
"tool": "search_code",
"arguments": {
"query": "user authentication password validation",
"limit": 10,
"file_type": "py"
}
}
# Response includes ranked code chunks with context
{
"results": [...],
"total_count": 25,
"latency_ms": 230
}
3. Task Management
# Create a task
{
"tool": "create_task",
"arguments": {
"title": "Implement rate limiting",
"description": "Add rate limiting to API endpoints",
"planning_references": ["specs/rate-limiting.md"]
}
}
# Update task with git integration
{
"tool": "update_task",
"arguments": {
"task_id": "task-uuid",
"status": "complete",
"branch": "feature/rate-limiting",
"commit": "abc123..."
}
}
Architecture
┌─────────────────────────────────────────────────┐
│ MCP Client (AI) │
└─────────────────┬───────────────────────────────┘
│ SSE Protocol
┌─────────────────▼───────────────────────────────┐
│ MCP Server Layer │
│ ┌──────────────────────────────────────────┐ │
│ │ Tool Registration & Routing │ │
│ └──────────────────────────────────────────┘ │
│ ┌──────────────────────────────────────────┐ │
│ │ Request/Response Handling │ │
│ └──────────────────────────────────────────┘ │
└─────────────────┬───────────────────────────────┘
│
┌─────────────────▼───────────────────────────────┐
│ Service Layer │
│ ┌────────────┐ ┌────────────┐ ┌────────────┐ │
│ │ Indexer │ │ Searcher │ │Task Manager│ │
│ └──────┬─────┘ └──────┬─────┘ └──────┬─────┘ │
│ │ │ │ │
│ ┌──────▼──────────────▼──────────────▼──────┐ │
│ │ Repository Service │ │
│ └──────┬─────────────────────────────────────┘ │
│ │ │
│ ┌──────▼─────────────────────────────────────┐ │
│ │ Embedding Service (Ollama) │ │
│ └─────────────────────────────────────────────┘│
└─────────────────┬───────────────────────────────┘
│
┌─────────────────▼───────────────────────────────┐
│ Data Layer │
│ ┌──────────────────────────────────────────┐ │
│ │ PostgreSQL with pgvector │ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │
│ │ │Repository│ │ Files │ │ Chunks │ │ │
│ │ └──────────┘ └──────────┘ └──────────┘ │ │
│ │ ┌──────────┐ ┌──────────────────────┐ │ │
│ │ │ Tasks │ │ Vector Embeddings │ │ │
│ │ └──────────┘ └──────────────────────┘ │ │
│ └──────────────────────────────────────────┘ │
└──────────────────────────────────────────────────┘
Component Overview
- MCP Layer: Handles protocol compliance, tool registration, SSE transport
- Service Layer: Business logic for indexing, searching, task management
- Repository Service: File system operations, git integration, .gitignore handling
- Embedding Service: Ollama integration for generating text embeddings
- Data Layer: PostgreSQL with pgvector for storage and similarity search
Data Flow
- Indexing: Repository → Parse → Chunk → Embed → Store
- Searching: Query → Embed → Vector Search → Rank → Return
- Task Tracking: Create → Update → Git Integration → Query
Testing
Run All Tests
# Run all tests with coverage
pytest tests/ -v --cov=src --cov-report=term-missing
# Run specific test categories
pytest tests/unit/ -v # Unit tests only
pytest tests/integration/ -v # Integration tests
pytest tests/contract/ -v # Contract tests
Test Categories
- Unit Tests: Fast, isolated component tests
- Integration Tests: Database and service integration
- Contract Tests: MCP protocol compliance validation
- Performance Tests: Latency and throughput benchmarks
Coverage Requirements
- Minimum coverage: 95%
- Critical paths: 100%
- View HTML report:
open htmlcov/index.html
Performance Tuning
Database Optimization
-- Optimize vector searches
CREATE INDEX ON chunks USING ivfflat (embedding vector_cosine_ops)
WITH (lists = 100);
-- Adjust work_mem for large result sets
ALTER SYSTEM SET work_mem = '256MB';
SELECT pg_reload_conf();
Connection Pool Settings
# In .env
DATABASE_POOL_SIZE=20 # Connection pool size
DATABASE_MAX_OVERFLOW=10 # Max overflow connections
DATABASE_POOL_TIMEOUT=30 # Connection timeout in seconds
Embedding Batch Size
# Adjust based on available memory
EMBEDDING_BATCH_SIZE=100 # For systems with 8GB+ RAM
EMBEDDING_BATCH_SIZE=50 # Default for 4GB RAM
EMBEDDING_BATCH_SIZE=25 # For constrained environments
Troubleshooting
Common Issues
-
Database Connection Failed
- Check PostgreSQL is running:
pg_ctl status - Verify DATABASE_URL in .env
- Ensure database exists:
psql -U postgres -l
- Check PostgreSQL is running:
-
Ollama Connection Error
- Check Ollama is running:
curl http://localhost:11434/api/tags - Verify model is installed:
ollama list - Check OLLAMA_BASE_URL in .env
- Check Ollama is running:
-
Slow Performance
- Check database indexes:
\diin psql - Monitor query performance: See logs at LOG_FILE path
- Adjust batch sizes and connection pool
- Check database indexes:
For detailed troubleshooting, see docs/troubleshooting.md and docs/guides/SETUP_GUIDE.md.
Contributing
We follow a specification-driven development workflow using the Specify framework.
Development Workflow
- Feature Specification: Use
/specifycommand to create feature specs - Planning: Generate implementation plan with
/plan - Task Breakdown: Create tasks with
/tasks - Implementation: Execute tasks with
/implement
Git Workflow
# Create feature branch
git checkout -b 001-feature-name
# Make atomic commits
git add .
git commit -m "feat(component): add specific feature"
# Push and create PR
git push origin 001-feature-name
Code Quality Standards
- Type Safety:
mypy --strictmust pass - Linting:
ruff checkwith no errors - Testing: All tests must pass with 95%+ coverage
- Documentation: Update relevant docs with changes
Constitutional Principles
- Simplicity Over Features: Focus on core semantic search
- Local-First Architecture: No cloud dependencies
- Protocol Compliance: Strict MCP adherence
- Performance Guarantees: Meet stated benchmarks
- Production Quality: Comprehensive error handling
See .specify/memory/constitution.md for full principles.
FastMCP Migration (Oct 2025)
Migration Complete: The server has been successfully migrated from the legacy MCP SDK to the modern FastMCP framework.
What Changed
Before (MCP SDK):
# Old: Manual tool registration with JSON schemas
class MCPServer:
def __init__(self):
self.tools = {
"search_code": {
"name": "search_code",
"description": "...",
"inputSchema": {...}
}
}
After (FastMCP):
# New: Decorator-based tool definitions
@mcp.tool()
async def search_code(query: str, limit: int = 10) -> dict[str, Any]:
"""Semantic code search with natural language queries."""
# Implementation
Key Benefits
- Simpler Tool Definitions: Decorators replace manual JSON schema creation
- Type Safety: Automatic schema generation from Pydantic models
- Dual Logging: File logging + MCP protocol without stdout pollution
- Better Error Handling: Structured error responses with context
- Cleaner Architecture: Separation of tool interface from business logic
Server Files
- New Entry Point:
server_fastmcp.py(root directory) - Legacy Server:
src/mcp/mcp_stdio_server_v3.py(deprecated, will be removed) - Tool Handlers:
src/mcp/tools/*.py(unchanged, reused by FastMCP) - Services:
src/services/*.py(unchanged, business logic intact)
Configuration Update Required
Update your Claude Desktop config to use the new server:
{
"mcpServers": {
"codebase-mcp": {
"command": "uv",
"args": ["run", "--with", "fastmcp", "python", "/path/to/server_fastmcp.py"]
}
}
}
Migration Notes
- All 6 MCP tools remain functional (100% backward compatible)
- No database schema changes required
- Tool signatures and responses unchanged
- Logging now goes exclusively to
/tmp/codebase-mcp.log - All tests pass with FastMCP implementation
Performance
FastMCP maintains performance targets:
- Repository indexing: <60 seconds for 10K files
- Code search: <500ms p95 latency
- Async/await throughout for optimal concurrency
License
MIT License - see LICENSE file for details.
Support
- Issues: GitHub Issues
- Documentation: Full documentation
- Logs: Check
/tmp/codebase-mcp.logfor detailed debugging
Acknowledgments
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.