Code Firewall MCP

Code Firewall MCP

A security filter that blocks dangerous code patterns by comparing normalized structural syntax trees against a blacklist of known threats using vector embeddings. It acts as a gatekeeper to prevent malicious code execution by identifying dangerous structures regardless of specific identifiers or literals.

Category
Visit Server

README

Code Firewall MCP

<!-- mcp-name: io.github.egoughnour/code-firewall-mcp -->

PyPI Claude Desktop Tests Release Python 3.10+ License: MIT

Top Language Code Size Last Commit Repository Size

A structural similarity-based code security filter for MCP (Model Context Protocol). Blocks dangerous code patterns before they reach execution tools by comparing code structure against a blacklist of known-bad patterns.

How It Works

flowchart LR
    A[Code<br/>file/string] --> B[Parse & Normalize<br/>tree-sitter]
    B --> C[Embed<br/>Ollama]
    C --> D{Similarity Check<br/>vs Blacklist}
    D -->|≥ threshold| E[🚫 BLOCKED]
    D -->|< threshold| F[✅ ALLOWED]
    F --> G[Execution Tools<br/>rlm_exec, etc.]

    style E fill:#ff6b6b,color:#fff
    style F fill:#51cf66,color:#fff
    style D fill:#339af0,color:#fff
  1. Parse code to Concrete Syntax Tree (CST) using tree-sitter
  2. Normalize by stripping identifiers and literals → structural skeleton
  3. Embed the normalized structure via Ollama
  4. Compare against blacklisted patterns in ChromaDB
  5. Block if similarity exceeds threshold, otherwise allow

Key Insight

Code patterns like os.system("rm -rf /") and os.system("ls") have identical structure. By normalizing away the specific commands/identifiers, we can detect dangerous patterns regardless of the specific arguments used.

Security-sensitive identifiers are preserved during normalization (e.g., eval, exec, os, system, subprocess, Popen, shell) to ensure embeddings remain discriminative for dangerous patterns.

Installation

Quick Start

Option 1: PyPI (Recommended)

uvx code-firewall-mcp
# or
pip install code-firewall-mcp

Option 2: Claude Desktop One-Click

Download the .mcpb from Releases and double-click to install.

Option 3: From Source

git clone https://github.com/egoughnour/code-firewall-mcp.git
cd code-firewall-mcp
uv sync

Wire to Claude Code / Claude Desktop

Add to ~/.claude/.mcp.json (Claude Code) or claude_desktop_config.json (Claude Desktop):

{
  "mcpServers": {
    "code-firewall": {
      "command": "uvx",
      "args": ["code-firewall-mcp"],
      "env": {
        "FIREWALL_DATA_DIR": "~/.code-firewall",
        "OLLAMA_URL": "http://localhost:11434"
      }
    }
  }
}

Requirements

  • Python 3.10+ (< 3.14 due to onnxruntime compatibility)
  • Ollama (for embeddings)
  • ChromaDB (for vector storage)
  • tree-sitter (optional, for better parsing)

Setting Up Ollama (Embeddings)

Code Firewall can automatically install and configure Ollama on macOS with Apple Silicon. There are two installation methods:

Method 1: Homebrew Installation

# 1. Check system requirements
firewall_system_check()

# 2. Install via Homebrew
firewall_setup_ollama(install=True, start_service=True, pull_model=True)

What this does:

  • Installs Ollama via Homebrew (brew install ollama)
  • Starts Ollama as a managed background service
  • Pulls nomic-embed-text model for embeddings

Method 2: Direct Download (No Sudo)

# 1. Check system
firewall_system_check()

# 2. Install via direct download - no sudo, no Homebrew
firewall_setup_ollama_direct(install=True, start_service=True, pull_model=True)

What this does:

  • Downloads Ollama from https://ollama.com
  • Extracts to ~/Applications/ (no admin needed)
  • Starts Ollama via ollama serve
  • Pulls nomic-embed-text model

Manual Setup

# Install Ollama
brew install ollama
# or download from https://ollama.ai

# Start service
brew services start ollama
# or: ollama serve

# Pull embedding model
ollama pull nomic-embed-text

# Verify
firewall_ollama_status()

Tools

Setup & Status Tools

Tool Purpose
firewall_system_check Check system requirements — verify macOS, Apple Silicon, RAM
firewall_setup_ollama Install via Homebrew — managed service, auto-updates
firewall_setup_ollama_direct Install via direct download — no sudo, fully headless
firewall_ollama_status Check Ollama availability — verify embeddings are ready

Firewall Tools

Tool Purpose
firewall_check Check if a code file is safe to execute
firewall_check_code Check code string directly (no file required)
firewall_blacklist Add a dangerous pattern to the blacklist
firewall_record_delta Record near-miss variants for classifier sharpening
firewall_list_patterns List patterns in blacklist or delta collection
firewall_remove_pattern Remove a pattern from blacklist or deltas
firewall_status Get firewall status and statistics

firewall_check

Check if a code file is safe to pass to execution tools.

result = await firewall_check(file_path="/path/to/script.py")
# Returns: {allowed: bool, blocked: bool, similarity: float, ...}

firewall_check_code

Check code string directly (no file required).

result = await firewall_check_code(
    code="import os; os.system('rm -rf /')",
    language="python"
)

firewall_blacklist

Add a dangerous pattern to the blacklist.

result = await firewall_blacklist(
    code="os.system(arbitrary_command)",
    reason="Arbitrary command execution",
    severity="critical"
)

firewall_record_delta

Record near-miss variants to sharpen the classifier.

result = await firewall_record_delta(
    code="subprocess.run(['ls', '-la'])",
    similar_to="abc123",
    notes="Legitimate use case for file listing"
)

firewall_list_patterns

List patterns in the blacklist or delta collection.

firewall_remove_pattern

Remove a pattern from blacklist or deltas.

firewall_status

Get firewall status and statistics.

Configuration

Environment variables:

Variable Default Description
FIREWALL_DATA_DIR /tmp/code-firewall Data storage directory
OLLAMA_URL http://localhost:11434 Ollama server URL
EMBEDDING_MODEL nomic-embed-text Ollama embedding model
SIMILARITY_THRESHOLD 0.85 Block threshold (0-1)
NEAR_MISS_THRESHOLD 0.70 Near-miss recording threshold

Usage Pattern

Pre-filter for massive-context-mcp

Use code-firewall-mcp as a gatekeeper before passing code to rlm_exec:

# 1. Check code safety
check = await firewall_check_code(user_code)

if check["blocked"]:
    print(f"BLOCKED: {check['reason']}")
    return

# 2. If allowed, proceed with execution
result = await rlm_exec(code=user_code, context_name="my-context")

Integrated with massive-context-mcp

Install massive-context-mcp with firewall integration:

pip install massive-context-mcp[firewall]

When enabled, rlm_exec automatically checks code against the firewall before execution.

Building the Blacklist

The blacklist grows through use:

  1. Initial seeding: Add known dangerous patterns
  2. Audit feedback: When rlm_auto_analyze finds security issues, add patterns
  3. Delta sharpening: Record near-misses to improve classification boundaries
# After security audit finds issues
await firewall_blacklist(
    code=dangerous_code,
    reason="Command injection via subprocess",
    severity="critical"
)

Structural Normalization

flowchart TD
    subgraph Input
        A1["os.system('rm -rf /')"]
        A2["os.system('ls -la')"]
        A3["os.system(user_cmd)"]
    end

    subgraph Normalization
        B[Strip literals & identifiers<br/>Preserve security keywords]
    end

    subgraph Output
        C["os.system('S')"]
    end

    A1 --> B
    A2 --> B
    A3 --> B
    B --> C

    style C fill:#ff922b,color:#fff

The normalizer strips:

  • Identifiers: my_var_ (except security-sensitive ones)
  • String literals: "hello""S"
  • Numbers: 42N
  • Comments: Removed entirely

Preserved identifiers (for better pattern matching):

  • eval, exec, compile, __import__
  • os, system, popen, subprocess, Popen, shell
  • open, read, write, socket, connect
  • getattr, setattr, __globals__, __builtins__
  • And more security-sensitive names...

Example:

# Original
subprocess.run(["curl", url, "-o", output_file])

# Normalized (preserves 'subprocess' and 'run')
subprocess.run(["S", _, "S", _])

Both subprocess.run(["curl", ...]) and subprocess.run(["wget", ...]) normalize to the same structure, so blacklisting one catches both.

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured