Clickzetta MCP Server

Clickzetta MCP Server

A Model Context Protocol server that enables database interaction with Clickzetta, allowing users to run SQL queries, manage tables, and maintain a dynamically updated memo of data insights.

Category
Visit Server

README

Clickzetta MCP Server

smithery badge PyPI - Version

Overview

A Model Context Protocol (MCP) server implementation that provides database interaction with Clickzetta Lakehouse. This server enables running SQL queries with tools and intereacting with a memo of data insights presented as a resource.

image.gif

Components

Resources

The server exposes a single dynamic resource:

  • memo://insights: A continuously updated data insights memo that aggregates discovered insights during analysis
    • Auto-updates as new insights are discovered via the append-insight tool

Tools

The server offers six core tools:

Query Tools

  • read_query

    • Execute SELECT queries to read data from the database
    • Input:
      • query (string): The SELECT SQL query to execute
    • Returns: Query results as array of objects
  • write_query (with --allow-write flag)

    • Execute INSERT, UPDATE, or DELETE queries
    • Input:
      • query (string): The SQL modification query
    • Returns: { affected_rows: number }
  • create_table (with --allow-write flag)

    • Create new tables in the database
    • Input:
      • query (string): CREATE TABLE SQL statement
    • Returns: Confirmation of table creation

Schema Tools

  • list_tables

    • Get a list of all tables in the database
    • No input required
    • Returns: Array of table names
  • describe-table

    • View column information for a specific table
    • Input:
      • table_name (string): Name of table to describe (can be fully qualified)
    • Returns: Array of column definitions with names and types

Analysis Tools

  • append_insight
    • Add new data insights to the memo resource
    • Input:
      • insight (string): data insight discovered from analysis
    • Returns: Confirmation of insight addition
    • Triggers update of memo://insights resource

Usage with Claude Desktop

Installing as local MCP Server(This way has been tested and verified on MacOS)

Clone this repository:

git clone https://github.com/yunqiqiliang/mcp-clickzetta-server.git
cd mcp-clickzetta-server

Install the package:

uv pip install -e .

Config credentials

Create a .env file based on .env.example with your Clickzetta Lakehouse credentials:

CLICKZETTA_USERNAME = ""
CLICKZETTA_PASSWORD = ""
CLICKZETTA_SERVICE = "api.clickzetta.com"
CLICKZETTA_INSTANCE = ""
CLICKZETTA_WORKSPACE = ""
CLICKZETTA_SCHEMA = ""
CLICKZETTA_VCLUSTER = ""
Usage
Running with uv

After installing the package, you can run the server directly with:

uv run mcp_clickzetta_server

If this is the first time you are running the server, you could run the following command to acclerate the package installation:

UV_INDEX_URL=https://pypi.tuna.tsinghua.edu.cn/simple/ uv run mcp_clickzetta_server

This will start the stdio-based MCP server, which can be connected to Claude Desktop or any MCP client that supports stdio communication.

You should see output similar to:


uv run mcp_clickzetta_server

2025-03-25 10:11:20,799 - mcp_clickzetta_server - INFO - Starting Clickzetta MCP Server
2025-03-25 10:11:20,799 - mcp_clickzetta_server - INFO - Allow write operations: False
2025-03-25 10:11:20,799 - mcp_clickzetta_server - INFO - Prefetch table descriptions: True
2025-03-25 10:11:20,799 - mcp_clickzetta_server - INFO - Excluded tools: []
2025-03-25 10:11:20,799 - mcp_clickzetta_server - INFO - Prefetching table descriptions
2025-03-25 10:11:21,726 - clickzetta.zettapark.session - INFO - Zettapark Session information: 
"version" : 0.1.3,
"python.version" : 3.12.2,
"python.connector.version" : 0.8.89.0,
"python.connector.session.id" : dd46bd27-920d-4760-94a6-6f994d31e63e,
"os.name" : Darwin

2025-03-25 10:11:21,728 - clickzetta.connector.v0.client - INFO - clickzetta connector submitting job,  id:2025032510112172821098301
2025-03-25 10:11:23,059 - clickzetta.connector.v0.client - INFO - clickzetta connector submitting job,  id:2025032510112305897947697
2025-03-25 10:11:23,728 - mcp_clickzetta_server - INFO - Allowed tools: ['read_query', 'append_insight']
2025-03-25 10:11:23,732 - mcp_clickzetta_server - INFO - Server running with stdio transport
Claude Desktop Integration
  • In Claude Desktop, go to Settings → MCP Servers
  • Add a new server with the full path to your uv executable:
{
   "mcpServers": {
      "clickzetta-mcp-server" : {
         "command": "/Users/******/anaconda3/bin/uv",
         "args": [
            "--directory",
            "/Users/******/Documents/GitHub/mcp-clickzetta-server",
            "run",
            "mcp_clickzetta_server"
         ]
      }
   }
}
  • You can find your uv path by running which uv in your terminal
  • Save the server configuration

image.png

Example Queries

When using with Claude, you can ask questions like:

  • "Can you list all the schemas in my Clickzetta account?"
  • "List all views in the PUBLIC schema"
  • "Describe the structure of the CUSTOMER_ANALYTICS view in the SALES schema"
  • "Show me sample data from the REVENUE_BY_REGION view in the FINANCE schema"
  • "Run this SQL query: SELECT customer_id, SUM(order_total) as total_spend FROM SALES.ORDERS GROUP BY customer_id ORDER BY total_spend DESC LIMIT 10"
  • "Query the MARKETING database to find the top 5 performing campaigns by conversion rate"
  • "帮我从Clickzetta中读取数据,分析下在public这个schema下github_users表里每个公司的用户数。请用中文返回结果,并对结果进行数据可视化展现"
  • "帮我从Clickzetta中读取数据,分析下在public这个schema下github_event_issuesevent表里有多少条记录?"
Example Result
  • '帮我从Clickzetta数据源中读取数据,先分析基于public这个schema下github_users表里的数据可以做哪些分析?包括指标、统计、趋势、以及各种经典的用户分析模型比如用户价值分析、用户生命周期分析、用户segment等,然后根据这些分析内容生成一个分析报告的dashboard'

image.gif

  • The result of "帮我从Clickzetta中读取数据,分析下在public这个schema下github_users表里每个公司的用户数。请用中文返回结果,并对结果进行数据可视化展现":

image.png

  • The result of "帮我从Clickzetta中读取数据,分析下在public这个schema下github_users表里每个位置 的用户数。请用中文返回结果,并对结果进行数据可视化展现":

image.png

Security Considerations

This server:

  • Enforces read-only operations (only SELECT statements are allowed)
  • Automatically adds LIMIT clauses to prevent large result sets
  • Uses service account authentication for secure connections
  • Validates inputs to prevent SQL injection
  • ⚠️ Important: Keep your .env file secure and never commit it to version control. The .gitignore file is configured to exclude it.

Installing via Smithery(This way is tobe tested and verified)

To install Clickzetta Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli@latest install @yunqiqiliang/mcp-clickzetta-server --client claude --key ******

Installing via UVX(This way is tobe tested and verified)

# Add the server to your claude_desktop_config.json
"mcpServers": {
  "clickzetta_pip": {
      "command": "uvx",
      "args": [
          "mcp_clickzetta_server",
          "--service",
          "the_service",
          "--instance",
          "the_instance",
          "--vcluster",
          "the_vcluster",
          "--workspace",
          "the_workspace",
           "--schema",
          "the_schema",
          "--user",
          "the_user",
          "--password",
          "their_password",
          # Optionally: "--allow_write" (but not recommended)
          # Optionally: "--log_dir", "/absolute/path/to/logs"
          # Optionally: "--log_level", "DEBUG"/"INFO"/"WARNING"/"ERROR"/"CRITICAL"
          # Optionally: "--exclude_tools", "{tool name}", ["{other tool name}"]
      ]
  }
}

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured