Claude Memory MCP Server
Provides a tiered, persistent memory architecture for Claude to automatically capture and retrieve user preferences, facts, and conversation history across sessions. It supports semantic search and seamless integration with the Claude desktop application using the Model Context Protocol.
README
Claude Memory MCP Server
An MCP (Model Context Protocol) server implementation that provides persistent memory capabilities for Large Language Models, specifically designed to integrate with the Claude desktop application.
Overview
This project implements optimal memory techniques based on comprehensive research of current approaches in the field. It provides a standardized way for Claude to maintain persistent memory across conversations and sessions.
Features
- Tiered Memory Architecture: Short-term, long-term, and archival memory tiers
- Multiple Memory Types: Support for conversations, knowledge, entities, and reflections
- Semantic Search: Retrieve memories based on semantic similarity
- Automatic Memory Management: Intelligent memory capture without explicit commands
- Memory Consolidation: Automatic consolidation of short-term memories into long-term memory
- Memory Management: Importance-based memory retention and forgetting
- Claude Integration: Ready-to-use integration with Claude desktop application
- MCP Protocol Support: Compatible with the Model Context Protocol
- Docker Support: Easy deployment using Docker containers
Quick Start
Option 1: Using Docker (Recommended)
# Clone the repository
git clone https://github.com/WhenMoon-afk/claude-memory-mcp.git
cd claude-memory-mcp
# Start with Docker Compose
docker-compose up -d
Configure Claude Desktop to use the containerized MCP server (see Docker Usage Guide for details).
Option 2: Standard Installation
-
Prerequisites:
- Python 3.8-3.12
- pip package manager
-
Installation:
# Clone the repository git clone https://github.com/WhenMoon-afk/claude-memory-mcp.git cd claude-memory-mcp # Install dependencies pip install -r requirements.txt # Run setup script chmod +x setup.sh ./setup.sh -
Claude Desktop Integration:
Add the following to your Claude configuration file:
{ "mcpServers": { "memory": { "command": "python", "args": ["-m", "memory_mcp"], "env": { "MEMORY_FILE_PATH": "/path/to/your/memory.json" } } } }
Using Memory with Claude
The Memory MCP Server enables Claude to remember information across conversations without requiring explicit commands.
-
Automatic Memory: Claude will automatically:
- Remember important details you share
- Store user preferences and facts
- Recall relevant information when needed
-
Memory Recall: To see what Claude remembers, simply ask:
- "What do you remember about me?"
- "What do you know about my preferences?"
-
System Prompt: For optimal memory usage, add this to your Claude system prompt:
This Claude instance has been enhanced with persistent memory capabilities. Claude will automatically remember important details about you across conversations and recall them when relevant, without needing explicit commands.
See the User Guide for detailed usage instructions and examples.
Documentation
Examples
The examples directory contains scripts demonstrating how to interact with the Memory MCP Server:
store_memory_example.py: Example of storing a memoryretrieve_memory_example.py: Example of retrieving memories
Troubleshooting
If you encounter issues:
- Check the Compatibility Guide for dependency requirements
- Ensure your Python version is 3.8-3.12
- For NumPy issues, use:
pip install "numpy>=1.20.0,<2.0.0" - Try using Docker for simplified deployment
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.