Claude Conversation Memory System
An MCP server that provides searchable local storage for Claude conversation history, featuring automatic topic extraction and weekly insight summaries. It enables Claude to retrieve context from past sessions through full-text search and organized file storage.
README
Code Quality
Overall Scorecard
Code Quality
Security
Claude Conversation Memory System
A Model Context Protocol (MCP) server that provides searchable local storage for Claude conversation history, enabling context retrieval during current sessions.
Features
- š Full-text search across conversation history
- š·ļø Automatic topic extraction and categorization
- š Weekly summaries with insights and patterns
- šļø Organized file storage by date and topic
- ā” Fast retrieval with relevance scoring
- š MCP integration for seamless Claude Desktop access
Quick Start
Prerequisites
- Python 3.11+ (tested with 3.11.12)
- Ubuntu/WSL environment recommended
- Claude Desktop (for MCP integration)
Installation
Option 1: Install with Claude Code (Recommended)
Quick Install - Copy and paste this into Claude Code:
claude mcp add --transport stdio claude-memory -- sh -c "cd $HOME/Code/claude-memory-mcp && python3 src/server_fastmcp.py"
Important: Replace $HOME/Code/claude-memory-mcp with the actual path where you cloned this repository.
Examples for different locations:
# If cloned to ~/Code/claude-memory-mcp (default)
claude mcp add --transport stdio claude-memory -- sh -c "cd $HOME/Code/claude-memory-mcp && python3 src/server_fastmcp.py"
# If cloned to ~/projects/claude-memory-mcp
claude mcp add --transport stdio claude-memory -- sh -c "cd $HOME/projects/claude-memory-mcp && python3 src/server_fastmcp.py"
# If cloned to ~/dev/claude-memory-mcp
claude mcp add --transport stdio claude-memory -- sh -c "cd $HOME/dev/claude-memory-mcp && python3 src/server_fastmcp.py"
What this does:
--transport stdio: Uses standard input/output for local processesclaude-memory: Server identifier name--: Separates Claude CLI flags from the server commandsh -c "cd ... && python3 ...": Changes to project directory before running server
This adds the MCP server to your Claude Desktop configuration automatically.
Documentation: https://code.claude.com/docs/en/mcp
Option 2: Manual Installation
-
Clone the repository:
git clone https://github.com/yourusername/claude-memory-mcp.git cd claude-memory-mcp -
Set up virtual environment:
python3 -m venv .venv source .venv/bin/activate -
Install dependencies:
pip install -e .This installs the package in editable mode along with all required dependencies:
mcp[cli]>=1.9.2- Model Context Protocoljsonschema>=4.0.0- JSON schema validationaiofiles>=24.1.0- Async file operations
-
Test the system:
python3 tests/validate_system.py
Basic Usage
Standalone Testing
# Test core functionality
python3 tests/standalone_test.py
MCP Server Mode
# Run as MCP server (from project root)
python3 src/server_fastmcp.py
# Or from src directory
cd src && python3 server_fastmcp.py
Bulk Import
# Import conversations from JSON export
python3 scripts/bulk_import_enhanced.py your_conversations.json
MCP Tools
The system provides three main tools:
search_conversations(query, limit=5)
Search through stored conversations by topic or content.
Example:
search_conversations("terraform azure deployment")
search_conversations("python debugging", limit=10)
add_conversation(content, title, date)
Add a new conversation to the memory system.
Example:
add_conversation(
content="Discussion about MCP server setup...",
title="MCP Server Configuration",
date="2025-06-01T14:30:00Z"
)
generate_weekly_summary(week_offset=0)
Generate insights and patterns from conversations.
Example:
generate_weekly_summary() # Current week
generate_weekly_summary(1) # Last week
Architecture
~/claude-memory/
āāā conversations/
ā āāā 2025/
ā ā āāā 06-june/
ā ā āāā 2025-06-01_topic-name.md
ā āāā index.json # Search index
ā āāā topics.json # Topic frequency
āāā summaries/
āāā weekly/
āāā week-2025-06-01.md
Configuration
Claude Desktop Integration
Add to your Claude Desktop MCP config:
{
"mcpServers": {
"claude-memory": {
"command": "python",
"args": ["/path/to/claude-memory-mcp/server_fastmcp.py"]
}
}
}
Storage Location
Default storage: ~/claude-memory/
Override with environment variable:
export CLAUDE_MEMORY_PATH="/custom/path"
Logging Configuration
Log Format
Switch between human-readable text logs (default) and structured JSON logs for production:
# JSON format (for production log aggregation)
export CLAUDE_MCP_LOG_FORMAT=json
# Text format (default, for development)
export CLAUDE_MCP_LOG_FORMAT=text
JSON Log Example:
{
"timestamp": "2025-01-15T10:30:45",
"level": "INFO",
"logger": "claude_memory_mcp",
"function": "add_conversation",
"line": 145,
"message": "Added conversation successfully",
"context": {
"type": "performance",
"duration_seconds": 0.045,
"conversation_id": "conv_abc123"
}
}
JSON logging is ideal for:
- Production deployments with log aggregation (Datadog, ELK, CloudWatch)
- Automated monitoring and alerting
- Structured log analysis and querying
- Performance tracking and debugging
See docs/json-logging.md for detailed JSON logging documentation.
File Structure
claude-memory-mcp/
āāā server_fastmcp.py # Main MCP server
āāā bulk_import_enhanced.py # Conversation import tool
āāā validate_system.py # System validation
āāā standalone_test.py # Core functionality test
āāā import_workflow.sh # Automated import process
āāā requirements.txt # Python dependencies
āāā IMPORT_GUIDE.md # Detailed import instructions
āāā README.md # This file
Performance
Performance validated through automated benchmarks:
- Search Speed: 0.05s average (159 conversations)
- Capacity: Tested with 159 conversations (7.8MB)
- Memory Usage: 40MB peak during operations
- Accuracy: 80%+ search relevance
- Write Performance: 1-12MB/s throughput
Last benchmarked: June 2025 | Detailed Report
Note for Developers: The development team uses performance benchmarks that create a ~/claude-memory-test directory for isolated testing. Normal MCP usage does NOT create this directory - it only uses ~/claude-memory/. If you see ~/claude-memory-test, it was created by running development scripts and can be safely deleted.
Search Examples
# Technical topics
search_conversations("terraform azure")
search_conversations("mcp server setup")
search_conversations("python debugging")
# Project discussions
search_conversations("interview preparation")
search_conversations("product management")
search_conversations("architecture decisions")
# Specific problems
search_conversations("dependency issues")
search_conversations("authentication error")
search_conversations("deployment configuration")
Development
Adding New Features
- Topic Extraction: Modify
_extract_topics()inConversationMemoryServer - Search Algorithm: Enhance
search_conversations()method - Summary Generation: Improve
generate_weekly_summary()logic
Testing
# Run validation suite
python3 tests/validate_system.py
# Test individual components
python3 tests/standalone_test.py
# Run full test suite with coverage
python3 -m pytest tests/ --ignore=tests/standalone_test.py --cov=src --cov-report=term
# Import test data
python3 scripts/bulk_import_enhanced.py test_data.json --dry-run
Test Data Storage (Developers Only): If you run performance benchmarks or test data generators, they create a ~/claude-memory-test directory to isolate test data from your production ~/claude-memory directory. This is only for development/testing - normal MCP usage does not create this directory.
To clean up test data after running benchmarks:
rm -rf ~/claude-memory-test
Or using the Makefile cleanup target:
make clean-test-data
Troubleshooting
Common Issues
MCP Import Errors:
pip install mcp[cli] # Include CLI extras
Search Returns No Results:
- Check conversation indexing:
ls ~/claude-memory/conversations/index.json - Verify file permissions
- Run validation:
python3 tests/validate_system.py
Weekly Summary Timezone Errors:
- Ensure all datetime objects use consistent timezone handling
- Recent fix addresses timezone-aware vs naive comparison
System Requirements
- Python: 3.11+ (tested with 3.11.12)
- Disk Space: ~10MB per 100 conversations
- Memory: <100MB RAM usage
- OS: Ubuntu/WSL recommended, macOS/Windows compatible
Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature-name - Commit changes:
git commit -am 'Add feature' - Push to branch:
git push origin feature-name - Submit a Pull Request
License
MIT License - see LICENSE file for details
Acknowledgments
- Built with Model Context Protocol (MCP)
- Designed for Claude Desktop integration
- Inspired by the need for persistent conversation context
Status: Production ready ā
Last Updated: June 2025
Version: 1.0.0
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.