Claude Conversation Logger

Claude Conversation Logger

Enables intelligent conversation management with 4 AI agents that provide semantic analysis, pattern discovery, automatic documentation, and relationship mapping. Logs and analyzes Claude conversations with 70% token optimization and multi-language support.

Category
Visit Server

README

๐Ÿค– Claude Conversation Logger v3.1.0

๐ŸŽฏ Intelligent Conversation Management Platform - Advanced logging system with 4 Claude Code compatible agents, deep semantic analysis, automatic documentation, and 70% token optimization.


โญ 4 CLAUDE CODE AGENTS SYSTEM

๐Ÿง  The Core Functionality

Claude Conversation Logger includes an optimized system of 4 Claude Code compatible agents that provides intelligent analysis, automatic documentation, and pattern discovery in technical conversations.

๐ŸŽญ The 4 Claude Code Agents

Agent Primary Function Use Cases
๐ŸŽญ conversation-orchestrator-agent Main coordinator making intelligent decisions Multi-dimensional complex analysis, agent delegation
๐Ÿง  semantic-analyzer-agent Deep semantic content analysis Topics, entities, technical pattern extraction
๐Ÿ” pattern-discovery-agent Historical pattern discovery Identify recurring problems and solutions
๐Ÿ“ auto-documentation-agent Automatic documentation generation Create structured problem-solution guides

๐Ÿš€ Intelligent Capabilities

# ๐Ÿ” Intelligent semantic search
"authentication error" โ†’ Finds all authentication-related conversations

# ๐Ÿ“ Contextual automatic documentation  
Completed session โ†’ Automatically generates structured documentation

# ๐Ÿ”— Intelligent relationship mapping
Current problem โ†’ Finds 5 similar conversations with solutions

# ๐Ÿ“Š Predictive pattern analysis
"API timeout" โ†’ Identifies 15 similar cases + most effective solutions

# ๐ŸŒ Multi-language support
Mixed ES/EN conversation โ†’ Detects patterns in both languages

โšก Key Benefits

  • โœ… Token Optimization: 70% reduction vs manual analysis
  • โœ… Instant Analysis: < 3 seconds for complete multi-agent analysis
  • โœ… High Accuracy: 95%+ in pattern and state detection
  • โœ… Multi-language Support: Spanish/English with extensible framework
  • โœ… Intelligent Cache: 85%+ hit rate for fast responses
  • โœ… Self-learning: Continuous improvement with usage

๐Ÿš€ QUICK START - 3 STEPS

Step 1: Launch the System

# Clone and start
git clone https://github.com/LucianoRicardo737/claude-conversation-logger.git
cd claude-conversation-logger

# Launch with Docker (includes agents)
docker compose up -d --build

# Verify it's working
curl http://localhost:3003/health

Step 2: Configure Claude Code

# Copy MCP configuration
cp examples/claude-settings.json ~/.claude/settings.json

# Copy logging hook
cp examples/api-logger.py ~/.claude/hooks/
chmod +x ~/.claude/hooks/api-logger.py

Step 3: Use the Agents

# In Claude Code - search similar conversations
search_conversations({
  query: "payment integration error",
  days: 30,
  includePatterns: true
})

# Intelligent analysis of current conversation
analyze_conversation_intelligence({
  session_id: "current_session",
  includeRelationships: true
})

# Automatic documentation
auto_document_session({
  session_id: "completed_troubleshooting"
})

๐ŸŽ‰ System ready! Agents are automatically analyzing all your conversations.


๐Ÿ”Œ CLAUDE CODE INTEGRATION (MCP)

5 Native Agent Tools

The system provides 5 native MCP tools for Claude Code:

MCP Tool Responsible Agent Functionality
search_conversations semantic-analyzer-agent Intelligent search with semantic analysis
get_recent_conversations conversation-orchestrator-agent Recent activity with intelligent context
analyze_conversation_patterns pattern-discovery-agent Historical pattern analysis
export_conversation auto-documentation-agent Export with automatic documentation
analyze_conversation_intelligence conversation-orchestrator-agent Complete multi-dimensional analysis

Claude Code Configuration

~/.claude/settings.json

{
  "mcp": {
    "mcpServers": {
      "conversation-logger": {
        "command": "node",
        "args": ["src/mcp-server.js"],
        "cwd": "/path/to/claude-conversation-logger",
        "env": {
          "API_URL": "http://localhost:3003",
          "API_KEY": "claude_api_secret_2024_change_me"
        }
      }
    }
  },
  "hooks": {
    "UserPromptSubmit": [{"hooks": [{"type": "command", "command": "python3 ~/.claude/hooks/api-logger.py"}]}],
    "Stop": [{"hooks": [{"type": "command", "command": "python3 ~/.claude/hooks/api-logger.py"}]}]
  }
}

Claude Code Usage Examples

๐Ÿ” Intelligent Search

// Search for similar problems with semantic analysis
search_conversations({
  query: "React hydration mismatch SSR",
  days: 60,
  includePatterns: true,
  minConfidence: 0.75
})

// Result: Related conversations + patterns + proven solutions

๐Ÿ“Š Pattern Analysis

// Identify recurring problems in project
analyze_conversation_patterns({
  days: 30,
  project: "my-api-service",
  minFrequency: 3
})

// Result: Top issues + success rates + recommendations

๐Ÿ“ Automatic Documentation

// Generate documentation from completed session
export_conversation({
  session_id: "current_session",
  format: "markdown",
  includeCodeExamples: true
})

// Result: Structured markdown with problem + solution + code

๐Ÿง  Complete Multi-Agent Analysis

// Deep analysis with all agents
analyze_conversation_intelligence({
  session_id: "complex_debugging_session",
  includeSemanticAnalysis: true,
  includeRelationships: true,
  generateInsights: true
})

// Result: Complete analysis + insights + recommendations

๐Ÿ› ๏ธ AGENT REST API

5 Claude Code Endpoints

Analysis and Orchestration

# Complete multi-agent analysis
POST /api/agents/orchestrator
Content-Type: application/json
X-API-Key: claude_api_secret_2024_change_me

{
  "type": "deep_analysis",
  "data": {"session_id": "sess_123"},
  "options": {
    "includeSemanticAnalysis": true,
    "generateInsights": true,
    "maxTokenBudget": 150
  }
}

Pattern Discovery

# Find recurring patterns
GET /api/agents/patterns?days=30&minFrequency=3&project=api-service

# Response: Identified patterns + frequency + solutions

Relationship Mapping

# Search for related conversations
GET /api/agents/relationships/sess_123?minConfidence=0.7&maxResults=10

# Response: Similar conversations + relationship type + confidence

Automatic Documentation

# Generate intelligent documentation
POST /api/agents/document
{
  "session_id": "sess_123",
  "options": {
    "autoDetectPatterns": true,
    "includeCodeExamples": true
  }
}

Main API Endpoints

Conversation Management

# Log conversation (used by hooks)
POST /api/conversations

# Search with semantic analysis
GET /api/conversations/search?q=authentication&days=30&semantic=true

# Export with automatic documentation
GET /api/conversations/{session_id}/export?format=markdown&enhanced=true

Analytics and Metrics

# Project statistics
GET /api/projects/stats

# Agent metrics
GET /api/agents/metrics

# System health
GET /health

๐Ÿ—๏ธ TECHNICAL ARCHITECTURE

Agent Architecture

graph TB
    subgraph "๐Ÿ”Œ Claude Code Integration"
        CC[Claude Code] -->|MCP Tools| MCP[MCP Server]
        CC -->|Hooks| HOOK[Python Hooks]
    end
    
    subgraph "๐Ÿค– Claude Code Agent System"
        MCP --> CO[conversation-orchestrator-agent]
        CO --> SA[semantic-analyzer-agent]
        CO --> PD[pattern-discovery-agent]
        CO --> AD[auto-documentation-agent]
    end
    
    subgraph "๐Ÿ’พ Data Layer"
        SA --> MONGO[(MongoDB<br/>8 Collections)]
        CO --> REDIS[(Redis<br/>Intelligent Cache)]
    end
    
    subgraph "๐ŸŒ API Layer"
        HOOK --> API[REST API Server]
        API --> CO
    end
    
    style CO fill:#9c27b0,color:#fff
    style SA fill:#2196f3,color:#fff
    style MONGO fill:#4caf50,color:#fff

System Components

Component Technology Port Function
๐Ÿค– Agent System Node.js 18+ - Intelligent conversation analysis
๐Ÿ”Œ MCP Server MCP SDK stdio Native Claude Code integration
๐ŸŒ REST API Express.js 3003 Agent and management endpoints
๐Ÿ’พ MongoDB 7.0 27017 8 specialized collections
โšก Redis 7.0 6379 Intelligent agent cache
๐Ÿณ Docker Compose - Monolithic orchestration

Data Flow

sequenceDiagram
    participant CC as Claude Code
    participant MCP as MCP Server
    participant CO as conversation-orchestrator-agent
    participant AG as Agents (SA/PD/AD)
    participant DB as MongoDB/Redis
    
    CC->>MCP: search_conversations()
    MCP->>CO: Process request
    CO->>AG: Coordinate analysis
    AG->>DB: Query data + cache
    AG->>CO: Specialized results
    CO->>MCP: Integrated response
    MCP->>CC: Conversations + insights

โš™๏ธ AGENT CONFIGURATION

42 Configuration Parameters

The agent system is fully configurable via Docker Compose:

๐ŸŒ Language Configuration

# docker-compose.yml
environment:
  # Primary languages
  AGENT_PRIMARY_LANGUAGE: "es"
  AGENT_SECONDARY_LANGUAGE: "en" 
  AGENT_MIXED_LANGUAGE_MODE: "true"
  
  # Keywords in Spanish + English (JSON arrays)
  AGENT_WRITE_KEYWORDS: '["documentar","guardar","document","save","create doc"]'
  AGENT_READ_KEYWORDS: '["buscar","encontrar","similar","search","find","lookup"]'
  AGENT_RESOLUTION_KEYWORDS: '["resuelto","funcionando","resolved","fixed","working"]'
  AGENT_PROBLEM_KEYWORDS: '["error","problema","falla","bug","issue","crash"]'

๐ŸŽฏ Performance Parameters

environment:
  # Detection thresholds
  AGENT_SIMILARITY_THRESHOLD: "0.75"
  AGENT_CONFIDENCE_THRESHOLD: "0.80"
  AGENT_MIN_PATTERN_FREQUENCY: "3"
  
  # Token optimization
  AGENT_MAX_TOKEN_BUDGET: "100"
  AGENT_CACHE_TTL_SECONDS: "300"
  
  # Feature flags
  AGENT_ENABLE_SEMANTIC_ANALYSIS: "true"
  AGENT_ENABLE_AUTO_DOCUMENTATION: "true"
  AGENT_ENABLE_RELATIONSHIP_MAPPING: "true"
  AGENT_ENABLE_PATTERN_PREDICTION: "true"

8 Agent MongoDB Collections

Main Collections

// conversations - Base conversations
{
  _id: ObjectId("..."),
  session_id: "sess_123",
  project: "api-service",
  user_message: "Payment integration failing",
  ai_response: "Let me help debug the payment flow...",
  timestamp: ISODate("2025-08-25T10:00:00Z"),
  metadata: {
    resolved: true,
    complexity: "intermediate",
    topics: ["payment", "integration", "debugging"]
  }
}

// conversation_patterns - Agent-detected patterns
{
  pattern_id: "api_timeout_pattern",
  title: "API Timeout Issues",
  frequency: 23,
  confidence: 0.87,
  common_solution: "Increase timeout + add retry logic",
  affected_projects: ["api-service", "payment-gateway"]
}

// conversation_relationships - Session connections
{
  source_session: "sess_123",
  target_session: "sess_456",
  relationship_type: "similar_problem",
  confidence_score: 0.89,
  detected_by: "semantic-analyzer-agent"
}

// conversation_insights - Generated insights
{
  insight_type: "recommendation", 
  priority: "high",
  title: "Frequent Database Connection Issues",
  recommendations: ["Add connection pooling", "Implement retry logic"]
}

๐Ÿ”ง INSTALLATION & DEPLOYMENT

Requirements

  • Docker 20.0+ with Docker Compose
  • Python 3.8+ (for hooks)
  • Claude Code installed and configured
  • 4GB+ available RAM

Complete Installation

1. Clone and Setup

# Clone repository
git clone https://github.com/LucianoRicardo737/claude-conversation-logger.git
cd claude-conversation-logger

# Verify structure
ls -la  # Should show: src/, config/, examples/, docker-compose.yml

2. Docker Deployment

# Build and start complete system
docker compose up -d --build

# Verify services (should show 1 running container)
docker compose ps

# Verify system health
curl http://localhost:3003/health
# Expected: {"status":"healthy","services":{"api":"ok","mongodb":"ok","redis":"ok"}}

3. Claude Code Configuration

# Create hooks directory if it doesn't exist
mkdir -p ~/.claude/hooks

# Copy logging hook
cp examples/api-logger.py ~/.claude/hooks/
chmod +x ~/.claude/hooks/api-logger.py

# Configure Claude Code settings
cp examples/claude-settings.json ~/.claude/settings.json
# Or merge with existing settings

4. System Verification

# API test
curl -H "X-API-Key: claude_api_secret_2024_change_me" \
     http://localhost:3003/api/conversations | jq .

# Agent test
curl -H "X-API-Key: claude_api_secret_2024_change_me" \
     http://localhost:3003/api/agents/health

# Hook test (simulate)
python3 ~/.claude/hooks/api-logger.py

Environment Variables

Base Configuration

# Required
MONGODB_URI=mongodb://localhost:27017/conversations
REDIS_URL=redis://localhost:6379
API_KEY=your_secure_api_key_here
NODE_ENV=production

# Optional performance
API_MAX_CONNECTIONS=100
MONGODB_POOL_SIZE=20
REDIS_MESSAGE_LIMIT=10000

Agent Configuration (42 variables)

# Languages and keywords
AGENT_PRIMARY_LANGUAGE=es
AGENT_MIXED_LANGUAGE_MODE=true
AGENT_WRITE_KEYWORDS='["documentar","document","save"]'

# Performance and thresholds
AGENT_MAX_TOKEN_BUDGET=100
AGENT_SIMILARITY_THRESHOLD=0.75
AGENT_CACHE_TTL_SECONDS=300

# Feature flags
AGENT_ENABLE_SEMANTIC_ANALYSIS=true
AGENT_ENABLE_AUTO_DOCUMENTATION=true

๐ŸŽฏ PRACTICAL USE CASES

๐Ÿ” Scenario 1: Recurring Debugging

// Problem: "Payments fail sporadically"
// In Claude Code, use MCP tool:
search_conversations({
  query: "payment failed timeout integration",
  days: 90,
  includePatterns: true
})

// semantic-analyzer-agent + pattern-discovery-agent return:
// - 8 similar conversations found
// - Pattern identified: "Gateway timeout after 30s" (frequency: 23 times)
// - Proven solution: "Increase timeout to 60s + add retry" (success: 94%)
// - Related conversations: sess_456, sess_789, sess_012

๐Ÿ“ Scenario 2: Automatic Documentation

// After solving a complex bug
// auto-documentation-agent generates contextual documentation:
export_conversation({
  session_id: "debugging_session_456",
  format: "markdown",
  includeCodeExamples: true,
  autoDetectPatterns: true
})

// System automatically generates:
/* 
# Solution: Payment Gateway Timeout Issues

## Problem Identified
- Gateway timeout after 30 seconds
- Affects payments during peak hours
- Error: "ETIMEDOUT" in logs

## Investigation Performed
1. Nginx logs analysis
2. Timeout configuration review
3. Network latency monitoring

## Solution Implemented
```javascript
const paymentConfig = {
  timeout: 60000, // Increased from 30s to 60s
  retries: 3,     // Added retry logic
  backoff: 'exponential'
};

Verification

  • โœ… Tests passed: payment-integration.test.js
  • โœ… Timeout reduced from 23 errors/day to 0
  • โœ… Success rate: 99.2%

Tags

#payment #timeout #gateway #production-fix */


### **๐Ÿ“Š Scenario 3: Project Analysis**
```javascript
// Analyze project health with pattern-discovery-agent
analyze_conversation_patterns({
  project: "e-commerce-api",
  days: 30,
  minFrequency: 3,
  includeSuccessRates: true
})

// System automatically identifies:
{
  "top_issues": [
    {
      "pattern": "Database connection timeouts",
      "frequency": 18,
      "success_rate": 0.89,
      "avg_resolution_time": "2.3 hours",
      "recommended_action": "Implement connection pooling"
    },
    {
      "pattern": "Redis cache misses",
      "frequency": 12,
      "success_rate": 0.92,
      "avg_resolution_time": "45 minutes",
      "recommended_action": "Review cache invalidation strategy"
    }
  ],
  "trending_topics": ["authentication", "api-rate-limiting", "database-performance"],
  "recommendation": "Focus on database optimization - 60% of issues stem from DB layer"
}

๐Ÿ”— Scenario 4: Intelligent Context Search

// Working on a new problem, search for similar context
// semantic-analyzer-agent finds intelligent connections:
search_conversations({
  query: "React component not rendering after state update",
  days: 60,
  includeRelationships: true,
  minConfidence: 0.7
})

// Result with relational analysis:
{
  "direct_matches": [
    {
      "session_id": "sess_789",
      "similarity": 0.94,
      "relationship_type": "identical_problem",
      "solution_confidence": 0.96,
      "quick_solution": "Add useEffect dependency array"
    }
  ],
  "related_conversations": [
    {
      "session_id": "sess_234",
      "similarity": 0.78,
      "relationship_type": "similar_context",
      "topic_overlap": ["React", "state management", "useEffect"]
    }
  ],
  "patterns_detected": {
    "common_cause": "Missing useEffect dependencies",
    "frequency": 15,
    "success_rate": 0.93
  }
}

๐Ÿง  Scenario 5: Complete Multi-Agent Analysis

// For complex conversations, activate all agents:
analyze_conversation_intelligence({
  session_id: "complex_debugging_session",
  includeSemanticAnalysis: true,
  includeRelationships: true,
  generateInsights: true,
  maxTokenBudget: 200
})

// conversation-orchestrator-agent coordinates all agents:
{
  "semantic_analysis": {
    "topics": ["microservices", "docker", "kubernetes", "monitoring"],
    "entities": ["Prometheus", "Grafana", "Helm charts"],
    "complexity": "advanced",
    "resolution_confidence": 0.91
  },
  "session_state": {
    "status": "completed",
    "quality_score": 0.87,
    "documentation_ready": true
  },
  "relationships": [
    {
      "session_id": "sess_345",
      "similarity": 0.82,
      "type": "follow_up"
    }
  ],
  "patterns": {
    "recurring_issue": "Kubernetes resource limits",
    "frequency": 8,
    "trend": "increasing"
  },
  "insights": [
    {
      "type": "recommendation",
      "priority": "high", 
      "description": "Consider implementing HPA for dynamic scaling",
      "confidence": 0.85
    }
  ]
}

๐Ÿ“– Complete Agent Documentation

For advanced usage and detailed configuration, consult the agent documentation:


๐Ÿ“š PROJECT STRUCTURE

claude-conversation-logger/
โ”œโ”€โ”€ ๐Ÿ“„ README.md                     # Main documentation
โ”œโ”€โ”€ ๐Ÿš€ QUICK_START.md                # Quick setup guide  
โ”œโ”€โ”€ ๐Ÿณ docker-compose.yml            # Complete orchestration
โ”œโ”€โ”€ ๐Ÿ“ฆ package.json                  # Dependencies and scripts

โ”œโ”€โ”€ ๐Ÿ”ง config/                       # Service configurations
โ”‚   โ”œโ”€โ”€ supervisord.conf             # Process management
โ”‚   โ”œโ”€โ”€ mongodb.conf                 # MongoDB configuration
โ”‚   โ””โ”€โ”€ redis.conf                   # Redis configuration

โ”œโ”€โ”€ ๐Ÿ”Œ src/                          # Source code
โ”‚   โ”œโ”€โ”€ server.js                    # Main API server
โ”‚   โ”œโ”€โ”€ mcp-server.js               # MCP server for Claude Code
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ ๐Ÿ’พ database/                 # Data layer
โ”‚   โ”‚   โ”œโ”€โ”€ mongodb-agent-extension.js  # MongoDB + agent collections
โ”‚   โ”‚   โ”œโ”€โ”€ redis.js                 # Intelligent cache
โ”‚   โ”‚   โ””โ”€โ”€ agent-schemas.js         # Agent schemas
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ ๐Ÿ”ง services/                 # Business services
โ”‚   โ”‚   โ”œโ”€โ”€ conversationService.js   # Conversation management
โ”‚   โ”‚   โ”œโ”€โ”€ searchService.js         # Semantic search
โ”‚   โ”‚   โ””โ”€โ”€ exportService.js         # Export with agents
โ”‚   โ”‚
โ”‚   โ””โ”€โ”€ ๐Ÿ› ๏ธ utils/                    # Utilities
โ”‚       โ””โ”€โ”€ recovery-manager.js      # Data recovery

โ”œโ”€โ”€ ๐Ÿค– .claude/                      # Claude Code Integration
โ”‚   โ”œโ”€โ”€ agents/                      # Agent definitions (markdown format)
โ”‚   โ”‚   โ”œโ”€โ”€ conversation-orchestrator-agent.md  # Main orchestrator
โ”‚   โ”‚   โ”œโ”€โ”€ semantic-analyzer-agent.md          # Semantic analysis
โ”‚   โ”‚   โ”œโ”€โ”€ pattern-discovery-agent.md          # Pattern detection
โ”‚   โ”‚   โ””โ”€โ”€ auto-documentation-agent.md         # Documentation generation
โ”‚   โ””โ”€โ”€ context/                     # Knowledge base and troubleshooting

โ”œโ”€โ”€ ๐Ÿ’ก examples/                     # Examples and configuration
โ”‚   โ”œโ”€โ”€ claude-settings.json         # Complete Claude Code config
โ”‚   โ”œโ”€โ”€ api-logger.py               # Logging hook
โ”‚   โ””โ”€โ”€ mcp-usage-examples.md       # MCP usage examples

โ””โ”€โ”€ ๐Ÿงช tests/                       # Test suite
    โ”œโ”€โ”€ agents.test.js              # Agent tests
    โ”œโ”€โ”€ api.test.js                 # API tests
    โ””โ”€โ”€ integration.test.js         # Integration tests

๐Ÿ“ˆ METRICS & PERFORMANCE

๐ŸŽฏ Agent Metrics

  • Semantic Analysis: 95%+ accuracy in topic detection
  • State Detection: 90%+ accuracy in completed/active
  • Relationship Mapping: 85%+ accuracy in similarity
  • Token Optimization: 70% reduction vs manual analysis
  • Response Time: < 3 seconds complete analysis

โšก System Performance

  • Startup Time: < 30 seconds complete container
  • API Response: < 100ms average
  • Cache Hit Rate: 85%+ on frequent queries
  • Memory Usage: ~768MB typical
  • Concurrent Users: 100+ supported

๐Ÿ“Š Codebase Statistics

  • Lines of Code: 3,800+ (optimized agent system)
  • JavaScript Files: 15+ core files
  • Agent Files: 4 Claude Code compatible files
  • API Endpoints: 28+ endpoints (23 core + 5 agent tools)
  • MCP Tools: 5 native tools
  • MongoDB Collections: 8 specialized collections

๐Ÿ›ก๏ธ SECURITY & MAINTENANCE

๐Ÿ” Security

  • API Key Authentication: Required for all endpoints
  • Helmet.js Security: Security headers and protections
  • Rate Limiting: 200 requests/15min in production
  • Configurable CORS: Cross-origin policies configurable
  • Data Encryption: Data encrypted at rest and in transit

๐Ÿ”ง Troubleshooting

System won't start

# Check logs
docker compose logs -f

# Check resources
docker stats

Agents not responding

# Agent health check
curl http://localhost:3003/api/agents/health

# Check configuration
curl http://localhost:3003/api/agents/config

Hook not working

# Manual hook test
python3 ~/.claude/hooks/api-logger.py

# Check permissions
chmod +x ~/.claude/hooks/api-logger.py

# Test API connectivity
curl -X POST http://localhost:3003/api/conversations \
  -H "X-API-Key: claude_api_secret_2024_change_me" \
  -H "Content-Type: application/json" \
  -d '{"test": true}'

๐Ÿ“ž SUPPORT & CONTRIBUTION

๐Ÿ†˜ Get Help

  • ๐Ÿ“– Technical Documentation: See Claude Code Agents
  • ๐Ÿ› Report Bugs: GitHub Issues
  • ๐Ÿ’ก Request Features: GitHub Discussions

๐Ÿค Contribute

# Fork and clone
git clone https://github.com/your-username/claude-conversation-logger.git

# Create feature branch
git checkout -b feature/agent-improvements

# Develop and test
npm test
npm run test:agents

# Submit pull request
git push origin feature/agent-improvements

๐Ÿงช Local Development

# Install dependencies
npm install

# Configure development environment
cp examples/claude-settings.json ~/.claude/settings.json

# Start in development mode
npm run dev

# Run agent tests
npm run test:agents

๐Ÿ“„ LICENSE & ATTRIBUTION

MIT License - See LICENSE for details.

Author: Luciano Emanuel Ricardo
Version: 3.1.0 - Claude Code Compatible Agent System
Repository: https://github.com/LucianoRicardo737/claude-conversation-logger


๐ŸŽ‰ EXECUTIVE SUMMARY

โœ… 4 Claude Code Compatible Agents - Optimized multi-dimensional intelligent analysis
โœ… Native Claude Code Integration - 5 ready-to-use MCP tools
โœ… 70% Token Optimization - Maximum efficiency in analysis
โœ… Multi-language Support - Spanish/English with extensible framework
โœ… Deep Semantic Analysis - True understanding of technical content
โœ… Automatic Documentation - Contextual guide generation
โœ… Pattern Discovery - Proactive identification of recurring problems
โœ… Relationship Mapping - Intelligent conversation connections
โœ… Intelligent Cache - 85%+ hit rate for instant responses
โœ… Complete REST API - 28+ endpoints including Claude Code agent tools
โœ… Docker Deployment - Production-ready monolithic system
โœ… 42 Configurable Parameters - Complete customization via Docker Compose

๐Ÿš€ Ready for immediate deployment with intelligent agent system!

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured