
Claude Conversation Logger
Enables intelligent conversation management with 4 AI agents that provide semantic analysis, pattern discovery, automatic documentation, and relationship mapping. Logs and analyzes Claude conversations with 70% token optimization and multi-language support.
README
🤖 Claude Conversation Logger v3.1.0
🎯 Intelligent Conversation Management Platform - Advanced logging system with 4 Claude Code compatible agents, deep semantic analysis, automatic documentation, and 70% token optimization.
⭐ 4 CLAUDE CODE AGENTS SYSTEM
🧠 The Core Functionality
Claude Conversation Logger includes an optimized system of 4 Claude Code compatible agents that provides intelligent analysis, automatic documentation, and pattern discovery in technical conversations.
🎭 The 4 Claude Code Agents
Agent | Primary Function | Use Cases |
---|---|---|
🎭 conversation-orchestrator-agent | Main coordinator making intelligent decisions | Multi-dimensional complex analysis, agent delegation |
🧠 semantic-analyzer-agent | Deep semantic content analysis | Topics, entities, technical pattern extraction |
🔍 pattern-discovery-agent | Historical pattern discovery | Identify recurring problems and solutions |
📝 auto-documentation-agent | Automatic documentation generation | Create structured problem-solution guides |
🚀 Intelligent Capabilities
# 🔍 Intelligent semantic search
"authentication error" → Finds all authentication-related conversations
# 📝 Contextual automatic documentation
Completed session → Automatically generates structured documentation
# 🔗 Intelligent relationship mapping
Current problem → Finds 5 similar conversations with solutions
# 📊 Predictive pattern analysis
"API timeout" → Identifies 15 similar cases + most effective solutions
# 🌍 Multi-language support
Mixed ES/EN conversation → Detects patterns in both languages
⚡ Key Benefits
- ✅ Token Optimization: 70% reduction vs manual analysis
- ✅ Instant Analysis: < 3 seconds for complete multi-agent analysis
- ✅ High Accuracy: 95%+ in pattern and state detection
- ✅ Multi-language Support: Spanish/English with extensible framework
- ✅ Intelligent Cache: 85%+ hit rate for fast responses
- ✅ Self-learning: Continuous improvement with usage
🚀 QUICK START - 3 STEPS
Step 1: Launch the System
# Clone and start
git clone https://github.com/LucianoRicardo737/claude-conversation-logger.git
cd claude-conversation-logger
# Launch with Docker (includes agents)
docker compose up -d --build
# Verify it's working
curl http://localhost:3003/health
Step 2: Configure Claude Code
# Copy MCP configuration
cp examples/claude-settings.json ~/.claude/settings.json
# Copy logging hook
cp examples/api-logger.py ~/.claude/hooks/
chmod +x ~/.claude/hooks/api-logger.py
Step 3: Use the Agents
# In Claude Code - search similar conversations
search_conversations({
query: "payment integration error",
days: 30,
includePatterns: true
})
# Intelligent analysis of current conversation
analyze_conversation_intelligence({
session_id: "current_session",
includeRelationships: true
})
# Automatic documentation
auto_document_session({
session_id: "completed_troubleshooting"
})
🎉 System ready! Agents are automatically analyzing all your conversations.
🔌 CLAUDE CODE INTEGRATION (MCP)
5 Native Agent Tools
The system provides 5 native MCP tools for Claude Code:
MCP Tool | Responsible Agent | Functionality |
---|---|---|
search_conversations |
semantic-analyzer-agent | Intelligent search with semantic analysis |
get_recent_conversations |
conversation-orchestrator-agent | Recent activity with intelligent context |
analyze_conversation_patterns |
pattern-discovery-agent | Historical pattern analysis |
export_conversation |
auto-documentation-agent | Export with automatic documentation |
analyze_conversation_intelligence |
conversation-orchestrator-agent | Complete multi-dimensional analysis |
Claude Code Configuration
~/.claude/settings.json
{
"mcp": {
"mcpServers": {
"conversation-logger": {
"command": "node",
"args": ["src/mcp-server.js"],
"cwd": "/path/to/claude-conversation-logger",
"env": {
"API_URL": "http://localhost:3003",
"API_KEY": "claude_api_secret_2024_change_me"
}
}
}
},
"hooks": {
"UserPromptSubmit": [{"hooks": [{"type": "command", "command": "python3 ~/.claude/hooks/api-logger.py"}]}],
"Stop": [{"hooks": [{"type": "command", "command": "python3 ~/.claude/hooks/api-logger.py"}]}]
}
}
Claude Code Usage Examples
🔍 Intelligent Search
// Search for similar problems with semantic analysis
search_conversations({
query: "React hydration mismatch SSR",
days: 60,
includePatterns: true,
minConfidence: 0.75
})
// Result: Related conversations + patterns + proven solutions
📊 Pattern Analysis
// Identify recurring problems in project
analyze_conversation_patterns({
days: 30,
project: "my-api-service",
minFrequency: 3
})
// Result: Top issues + success rates + recommendations
📝 Automatic Documentation
// Generate documentation from completed session
export_conversation({
session_id: "current_session",
format: "markdown",
includeCodeExamples: true
})
// Result: Structured markdown with problem + solution + code
🧠 Complete Multi-Agent Analysis
// Deep analysis with all agents
analyze_conversation_intelligence({
session_id: "complex_debugging_session",
includeSemanticAnalysis: true,
includeRelationships: true,
generateInsights: true
})
// Result: Complete analysis + insights + recommendations
🛠️ AGENT REST API
5 Claude Code Endpoints
Analysis and Orchestration
# Complete multi-agent analysis
POST /api/agents/orchestrator
Content-Type: application/json
X-API-Key: claude_api_secret_2024_change_me
{
"type": "deep_analysis",
"data": {"session_id": "sess_123"},
"options": {
"includeSemanticAnalysis": true,
"generateInsights": true,
"maxTokenBudget": 150
}
}
Pattern Discovery
# Find recurring patterns
GET /api/agents/patterns?days=30&minFrequency=3&project=api-service
# Response: Identified patterns + frequency + solutions
Relationship Mapping
# Search for related conversations
GET /api/agents/relationships/sess_123?minConfidence=0.7&maxResults=10
# Response: Similar conversations + relationship type + confidence
Automatic Documentation
# Generate intelligent documentation
POST /api/agents/document
{
"session_id": "sess_123",
"options": {
"autoDetectPatterns": true,
"includeCodeExamples": true
}
}
Main API Endpoints
Conversation Management
# Log conversation (used by hooks)
POST /api/conversations
# Search with semantic analysis
GET /api/conversations/search?q=authentication&days=30&semantic=true
# Export with automatic documentation
GET /api/conversations/{session_id}/export?format=markdown&enhanced=true
Analytics and Metrics
# Project statistics
GET /api/projects/stats
# Agent metrics
GET /api/agents/metrics
# System health
GET /health
🏗️ TECHNICAL ARCHITECTURE
Agent Architecture
graph TB
subgraph "🔌 Claude Code Integration"
CC[Claude Code] -->|MCP Tools| MCP[MCP Server]
CC -->|Hooks| HOOK[Python Hooks]
end
subgraph "🤖 Claude Code Agent System"
MCP --> CO[conversation-orchestrator-agent]
CO --> SA[semantic-analyzer-agent]
CO --> PD[pattern-discovery-agent]
CO --> AD[auto-documentation-agent]
end
subgraph "💾 Data Layer"
SA --> MONGO[(MongoDB<br/>8 Collections)]
CO --> REDIS[(Redis<br/>Intelligent Cache)]
end
subgraph "🌐 API Layer"
HOOK --> API[REST API Server]
API --> CO
end
style CO fill:#9c27b0,color:#fff
style SA fill:#2196f3,color:#fff
style MONGO fill:#4caf50,color:#fff
System Components
Component | Technology | Port | Function |
---|---|---|---|
🤖 Agent System | Node.js 18+ | - | Intelligent conversation analysis |
🔌 MCP Server | MCP SDK | stdio | Native Claude Code integration |
🌐 REST API | Express.js | 3003 | Agent and management endpoints |
💾 MongoDB | 7.0 | 27017 | 8 specialized collections |
⚡ Redis | 7.0 | 6379 | Intelligent agent cache |
🐳 Docker | Compose | - | Monolithic orchestration |
Data Flow
sequenceDiagram
participant CC as Claude Code
participant MCP as MCP Server
participant CO as conversation-orchestrator-agent
participant AG as Agents (SA/PD/AD)
participant DB as MongoDB/Redis
CC->>MCP: search_conversations()
MCP->>CO: Process request
CO->>AG: Coordinate analysis
AG->>DB: Query data + cache
AG->>CO: Specialized results
CO->>MCP: Integrated response
MCP->>CC: Conversations + insights
⚙️ AGENT CONFIGURATION
42 Configuration Parameters
The agent system is fully configurable via Docker Compose:
🌍 Language Configuration
# docker-compose.yml
environment:
# Primary languages
AGENT_PRIMARY_LANGUAGE: "es"
AGENT_SECONDARY_LANGUAGE: "en"
AGENT_MIXED_LANGUAGE_MODE: "true"
# Keywords in Spanish + English (JSON arrays)
AGENT_WRITE_KEYWORDS: '["documentar","guardar","document","save","create doc"]'
AGENT_READ_KEYWORDS: '["buscar","encontrar","similar","search","find","lookup"]'
AGENT_RESOLUTION_KEYWORDS: '["resuelto","funcionando","resolved","fixed","working"]'
AGENT_PROBLEM_KEYWORDS: '["error","problema","falla","bug","issue","crash"]'
🎯 Performance Parameters
environment:
# Detection thresholds
AGENT_SIMILARITY_THRESHOLD: "0.75"
AGENT_CONFIDENCE_THRESHOLD: "0.80"
AGENT_MIN_PATTERN_FREQUENCY: "3"
# Token optimization
AGENT_MAX_TOKEN_BUDGET: "100"
AGENT_CACHE_TTL_SECONDS: "300"
# Feature flags
AGENT_ENABLE_SEMANTIC_ANALYSIS: "true"
AGENT_ENABLE_AUTO_DOCUMENTATION: "true"
AGENT_ENABLE_RELATIONSHIP_MAPPING: "true"
AGENT_ENABLE_PATTERN_PREDICTION: "true"
8 Agent MongoDB Collections
Main Collections
// conversations - Base conversations
{
_id: ObjectId("..."),
session_id: "sess_123",
project: "api-service",
user_message: "Payment integration failing",
ai_response: "Let me help debug the payment flow...",
timestamp: ISODate("2025-08-25T10:00:00Z"),
metadata: {
resolved: true,
complexity: "intermediate",
topics: ["payment", "integration", "debugging"]
}
}
// conversation_patterns - Agent-detected patterns
{
pattern_id: "api_timeout_pattern",
title: "API Timeout Issues",
frequency: 23,
confidence: 0.87,
common_solution: "Increase timeout + add retry logic",
affected_projects: ["api-service", "payment-gateway"]
}
// conversation_relationships - Session connections
{
source_session: "sess_123",
target_session: "sess_456",
relationship_type: "similar_problem",
confidence_score: 0.89,
detected_by: "semantic-analyzer-agent"
}
// conversation_insights - Generated insights
{
insight_type: "recommendation",
priority: "high",
title: "Frequent Database Connection Issues",
recommendations: ["Add connection pooling", "Implement retry logic"]
}
🔧 INSTALLATION & DEPLOYMENT
Requirements
- Docker 20.0+ with Docker Compose
- Python 3.8+ (for hooks)
- Claude Code installed and configured
- 4GB+ available RAM
Complete Installation
1. Clone and Setup
# Clone repository
git clone https://github.com/LucianoRicardo737/claude-conversation-logger.git
cd claude-conversation-logger
# Verify structure
ls -la # Should show: src/, config/, examples/, docker-compose.yml
2. Docker Deployment
# Build and start complete system
docker compose up -d --build
# Verify services (should show 1 running container)
docker compose ps
# Verify system health
curl http://localhost:3003/health
# Expected: {"status":"healthy","services":{"api":"ok","mongodb":"ok","redis":"ok"}}
3. Claude Code Configuration
# Create hooks directory if it doesn't exist
mkdir -p ~/.claude/hooks
# Copy logging hook
cp examples/api-logger.py ~/.claude/hooks/
chmod +x ~/.claude/hooks/api-logger.py
# Configure Claude Code settings
cp examples/claude-settings.json ~/.claude/settings.json
# Or merge with existing settings
4. System Verification
# API test
curl -H "X-API-Key: claude_api_secret_2024_change_me" \
http://localhost:3003/api/conversations | jq .
# Agent test
curl -H "X-API-Key: claude_api_secret_2024_change_me" \
http://localhost:3003/api/agents/health
# Hook test (simulate)
python3 ~/.claude/hooks/api-logger.py
Environment Variables
Base Configuration
# Required
MONGODB_URI=mongodb://localhost:27017/conversations
REDIS_URL=redis://localhost:6379
API_KEY=your_secure_api_key_here
NODE_ENV=production
# Optional performance
API_MAX_CONNECTIONS=100
MONGODB_POOL_SIZE=20
REDIS_MESSAGE_LIMIT=10000
Agent Configuration (42 variables)
# Languages and keywords
AGENT_PRIMARY_LANGUAGE=es
AGENT_MIXED_LANGUAGE_MODE=true
AGENT_WRITE_KEYWORDS='["documentar","document","save"]'
# Performance and thresholds
AGENT_MAX_TOKEN_BUDGET=100
AGENT_SIMILARITY_THRESHOLD=0.75
AGENT_CACHE_TTL_SECONDS=300
# Feature flags
AGENT_ENABLE_SEMANTIC_ANALYSIS=true
AGENT_ENABLE_AUTO_DOCUMENTATION=true
🎯 PRACTICAL USE CASES
🔍 Scenario 1: Recurring Debugging
// Problem: "Payments fail sporadically"
// In Claude Code, use MCP tool:
search_conversations({
query: "payment failed timeout integration",
days: 90,
includePatterns: true
})
// semantic-analyzer-agent + pattern-discovery-agent return:
// - 8 similar conversations found
// - Pattern identified: "Gateway timeout after 30s" (frequency: 23 times)
// - Proven solution: "Increase timeout to 60s + add retry" (success: 94%)
// - Related conversations: sess_456, sess_789, sess_012
📝 Scenario 2: Automatic Documentation
// After solving a complex bug
// auto-documentation-agent generates contextual documentation:
export_conversation({
session_id: "debugging_session_456",
format: "markdown",
includeCodeExamples: true,
autoDetectPatterns: true
})
// System automatically generates:
/*
# Solution: Payment Gateway Timeout Issues
## Problem Identified
- Gateway timeout after 30 seconds
- Affects payments during peak hours
- Error: "ETIMEDOUT" in logs
## Investigation Performed
1. Nginx logs analysis
2. Timeout configuration review
3. Network latency monitoring
## Solution Implemented
```javascript
const paymentConfig = {
timeout: 60000, // Increased from 30s to 60s
retries: 3, // Added retry logic
backoff: 'exponential'
};
Verification
- ✅ Tests passed: payment-integration.test.js
- ✅ Timeout reduced from 23 errors/day to 0
- ✅ Success rate: 99.2%
Tags
#payment #timeout #gateway #production-fix */
### **📊 Scenario 3: Project Analysis**
```javascript
// Analyze project health with pattern-discovery-agent
analyze_conversation_patterns({
project: "e-commerce-api",
days: 30,
minFrequency: 3,
includeSuccessRates: true
})
// System automatically identifies:
{
"top_issues": [
{
"pattern": "Database connection timeouts",
"frequency": 18,
"success_rate": 0.89,
"avg_resolution_time": "2.3 hours",
"recommended_action": "Implement connection pooling"
},
{
"pattern": "Redis cache misses",
"frequency": 12,
"success_rate": 0.92,
"avg_resolution_time": "45 minutes",
"recommended_action": "Review cache invalidation strategy"
}
],
"trending_topics": ["authentication", "api-rate-limiting", "database-performance"],
"recommendation": "Focus on database optimization - 60% of issues stem from DB layer"
}
🔗 Scenario 4: Intelligent Context Search
// Working on a new problem, search for similar context
// semantic-analyzer-agent finds intelligent connections:
search_conversations({
query: "React component not rendering after state update",
days: 60,
includeRelationships: true,
minConfidence: 0.7
})
// Result with relational analysis:
{
"direct_matches": [
{
"session_id": "sess_789",
"similarity": 0.94,
"relationship_type": "identical_problem",
"solution_confidence": 0.96,
"quick_solution": "Add useEffect dependency array"
}
],
"related_conversations": [
{
"session_id": "sess_234",
"similarity": 0.78,
"relationship_type": "similar_context",
"topic_overlap": ["React", "state management", "useEffect"]
}
],
"patterns_detected": {
"common_cause": "Missing useEffect dependencies",
"frequency": 15,
"success_rate": 0.93
}
}
🧠 Scenario 5: Complete Multi-Agent Analysis
// For complex conversations, activate all agents:
analyze_conversation_intelligence({
session_id: "complex_debugging_session",
includeSemanticAnalysis: true,
includeRelationships: true,
generateInsights: true,
maxTokenBudget: 200
})
// conversation-orchestrator-agent coordinates all agents:
{
"semantic_analysis": {
"topics": ["microservices", "docker", "kubernetes", "monitoring"],
"entities": ["Prometheus", "Grafana", "Helm charts"],
"complexity": "advanced",
"resolution_confidence": 0.91
},
"session_state": {
"status": "completed",
"quality_score": 0.87,
"documentation_ready": true
},
"relationships": [
{
"session_id": "sess_345",
"similarity": 0.82,
"type": "follow_up"
}
],
"patterns": {
"recurring_issue": "Kubernetes resource limits",
"frequency": 8,
"trend": "increasing"
},
"insights": [
{
"type": "recommendation",
"priority": "high",
"description": "Consider implementing HPA for dynamic scaling",
"confidence": 0.85
}
]
}
📖 Complete Agent Documentation
For advanced usage and detailed configuration, consult the agent documentation:
- 🤖 Claude Code Agent Files - Complete agent configurations in markdown format
- 🎭 conversation-orchestrator-agent - Main orchestrator configuration
- 🧠 semantic-analyzer-agent - Semantic analysis agent
- 🔍 pattern-discovery-agent - Pattern discovery configuration
- 📝 auto-documentation-agent - Documentation generation agent
- 📋 Context System - Knowledge base and troubleshooting guides
📚 PROJECT STRUCTURE
claude-conversation-logger/
├── 📄 README.md # Main documentation
├── 🚀 QUICK_START.md # Quick setup guide
├── 🐳 docker-compose.yml # Complete orchestration
├── 📦 package.json # Dependencies and scripts
├── 🔧 config/ # Service configurations
│ ├── supervisord.conf # Process management
│ ├── mongodb.conf # MongoDB configuration
│ └── redis.conf # Redis configuration
├── 🔌 src/ # Source code
│ ├── server.js # Main API server
│ ├── mcp-server.js # MCP server for Claude Code
│ │
│ ├── 💾 database/ # Data layer
│ │ ├── mongodb-agent-extension.js # MongoDB + agent collections
│ │ ├── redis.js # Intelligent cache
│ │ └── agent-schemas.js # Agent schemas
│ │
│ ├── 🔧 services/ # Business services
│ │ ├── conversationService.js # Conversation management
│ │ ├── searchService.js # Semantic search
│ │ └── exportService.js # Export with agents
│ │
│ └── 🛠️ utils/ # Utilities
│ └── recovery-manager.js # Data recovery
├── 🤖 .claude/ # Claude Code Integration
│ ├── agents/ # Agent definitions (markdown format)
│ │ ├── conversation-orchestrator-agent.md # Main orchestrator
│ │ ├── semantic-analyzer-agent.md # Semantic analysis
│ │ ├── pattern-discovery-agent.md # Pattern detection
│ │ └── auto-documentation-agent.md # Documentation generation
│ └── context/ # Knowledge base and troubleshooting
├── 💡 examples/ # Examples and configuration
│ ├── claude-settings.json # Complete Claude Code config
│ ├── api-logger.py # Logging hook
│ └── mcp-usage-examples.md # MCP usage examples
└── 🧪 tests/ # Test suite
├── agents.test.js # Agent tests
├── api.test.js # API tests
└── integration.test.js # Integration tests
📈 METRICS & PERFORMANCE
🎯 Agent Metrics
- Semantic Analysis: 95%+ accuracy in topic detection
- State Detection: 90%+ accuracy in completed/active
- Relationship Mapping: 85%+ accuracy in similarity
- Token Optimization: 70% reduction vs manual analysis
- Response Time: < 3 seconds complete analysis
⚡ System Performance
- Startup Time: < 30 seconds complete container
- API Response: < 100ms average
- Cache Hit Rate: 85%+ on frequent queries
- Memory Usage: ~768MB typical
- Concurrent Users: 100+ supported
📊 Codebase Statistics
- Lines of Code: 3,800+ (optimized agent system)
- JavaScript Files: 15+ core files
- Agent Files: 4 Claude Code compatible files
- API Endpoints: 28+ endpoints (23 core + 5 agent tools)
- MCP Tools: 5 native tools
- MongoDB Collections: 8 specialized collections
🛡️ SECURITY & MAINTENANCE
🔐 Security
- API Key Authentication: Required for all endpoints
- Helmet.js Security: Security headers and protections
- Rate Limiting: 200 requests/15min in production
- Configurable CORS: Cross-origin policies configurable
- Data Encryption: Data encrypted at rest and in transit
🔧 Troubleshooting
System won't start
# Check logs
docker compose logs -f
# Check resources
docker stats
Agents not responding
# Agent health check
curl http://localhost:3003/api/agents/health
# Check configuration
curl http://localhost:3003/api/agents/config
Hook not working
# Manual hook test
python3 ~/.claude/hooks/api-logger.py
# Check permissions
chmod +x ~/.claude/hooks/api-logger.py
# Test API connectivity
curl -X POST http://localhost:3003/api/conversations \
-H "X-API-Key: claude_api_secret_2024_change_me" \
-H "Content-Type: application/json" \
-d '{"test": true}'
📞 SUPPORT & CONTRIBUTION
🆘 Get Help
- 📖 Technical Documentation: See Claude Code Agents
- 🐛 Report Bugs: GitHub Issues
- 💡 Request Features: GitHub Discussions
🤝 Contribute
# Fork and clone
git clone https://github.com/your-username/claude-conversation-logger.git
# Create feature branch
git checkout -b feature/agent-improvements
# Develop and test
npm test
npm run test:agents
# Submit pull request
git push origin feature/agent-improvements
🧪 Local Development
# Install dependencies
npm install
# Configure development environment
cp examples/claude-settings.json ~/.claude/settings.json
# Start in development mode
npm run dev
# Run agent tests
npm run test:agents
📄 LICENSE & ATTRIBUTION
MIT License - See LICENSE for details.
Author: Luciano Emanuel Ricardo
Version: 3.1.0 - Claude Code Compatible Agent System
Repository: https://github.com/LucianoRicardo737/claude-conversation-logger
🎉 EXECUTIVE SUMMARY
✅ 4 Claude Code Compatible Agents - Optimized multi-dimensional intelligent analysis
✅ Native Claude Code Integration - 5 ready-to-use MCP tools
✅ 70% Token Optimization - Maximum efficiency in analysis
✅ Multi-language Support - Spanish/English with extensible framework
✅ Deep Semantic Analysis - True understanding of technical content
✅ Automatic Documentation - Contextual guide generation
✅ Pattern Discovery - Proactive identification of recurring problems
✅ Relationship Mapping - Intelligent conversation connections
✅ Intelligent Cache - 85%+ hit rate for instant responses
✅ Complete REST API - 28+ endpoints including Claude Code agent tools
✅ Docker Deployment - Production-ready monolithic system
✅ 42 Configurable Parameters - Complete customization via Docker Compose
🚀 Ready for immediate deployment with intelligent agent system!
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.