Claude Context Local

Claude Context Local

Provides semantic code search capabilities that run 100% locally using EmbeddingGemma embeddings. Enables finding code by meaning across 15 file extensions and 9+ programming languages without API costs or sending code to the cloud.

Category
Visit Server

README

  ██████╗ ██╗       █████╗  ██╗   ██╗ ██████╗  ███████╗
 ██╔════╝ ██║      ██╔══██╗ ██║   ██║ ██╔══██╗ ██╔════╝
 ██║      ██║      ███████║ ██║   ██║ ██║  ██║ █████╗
 ██║      ██║      ██╔══██║ ██║   ██║ ██║  ██║ ██╔══╝
 ╚██████╗ ███████╗ ██║  ██║ ╚██████╔╝ ██████╔╝ ███████╗
  ╚═════╝ ╚══════╝ ╚═╝  ╚═╝  ╚═════╝  ╚═════╝  ╚══════╝

  ██████╗  ██████╗  ███╗   ██╗ ████████╗ ███████╗ ██╗  ██╗ ████████╗
 ██╔════╝ ██╔═══██╗ ████╗  ██║ ╚══██╔══╝ ██╔════╝ ╚██╗██╔╝ ╚══██╔══╝
 ██║      ██║   ██║ ██╔██╗ ██║    ██║    █████╗    ╚███╔╝     ██║
 ██║      ██║   ██║ ██║╚██╗██║    ██║    ██╔══╝    ██╔██╗     ██║
 ╚██████╗ ╚██████╔╝ ██║ ╚████║    ██║    ███████╗ ██╔╝ ██╗    ██║
  ╚═════╝  ╚═════╝  ╚═╝  ╚═══╝    ╚═╝    ╚══════╝ ╚═╝  ╚═╝    ╚═╝

 ██╗       ██████╗   ██████╗  █████╗  ██╗
 ██║      ██╔═══██╗ ██╔════╝ ██╔══██╗ ██║
 ██║      ██║   ██║ ██║      ███████║ ██║
 ██║      ██║   ██║ ██║      ██╔══██║ ██║
 ███████╗ ╚██████╔╝ ╚██████╗ ██║  ██║ ███████╗
 ╚══════╝  ╚═════╝   ╚═════╝ ╚═╝  ╚═╝ ╚══════╝

Claude Context without the cloud. Semantic code search that runs 100% locally using EmbeddingGemma. No API keys, no costs, your code never leaves your machine.

  • 🔍 Find code by meaning, not strings
  • 🔒 100% local - completely private
  • 💰 Zero API costs - forever free
  • Fewer tokens in Claude Code and fast local searches

An intelligent code search system that uses Google's EmbeddingGemma model and advanced multi-language chunking to provide semantic search capabilities across 15 file extensions and 9+ programming languages, integrated with Claude Code via MCP (Model Context Protocol).

🚧 Beta Release

  • Core functionality working
  • Installation tested on Mac/Linux
  • Benchmarks coming soon
  • Please report issues!

Demo

<img src="https://github.com/FarhanAliRaza/claude-context-local/releases/download/v0.1/example.gif" alt="Demo of local semantic code search" width="900" />

Features

  • Multi-language support: 9+ programming languages with 15 file extensions
  • Intelligent chunking: AST-based (Python) + tree-sitter (JS/TS/Go/Java/Rust/C/C++/C#)
  • Semantic search: Natural language queries to find code across all languages
  • Rich metadata: File paths, folder structure, semantic tags, language-specific info
  • MCP integration: Direct integration with Claude Code
  • Local processing: All embeddings stored locally, no API calls
  • Fast search: FAISS for efficient similarity search

Why this

Claude’s code context is powerful, but sending your code to the cloud costs tokens and raises privacy concerns. This project keeps semantic code search entirely on your machine. It integrates with Claude Code via MCP, so you keep the same workflow—just faster, cheaper, and private.

Requirements

  • Python 3.12+
  • Disk: 1–2 GB free (model + caches + index)
  • Optional: NVIDIA GPU (CUDA 11/12) for FAISS acceleration; Apple Silicon (MPS) for embedding acceleration. These also speed up running the embedding model with SentenceTransformer, but everything still works on CPU.

Install & Update

Install (one‑liner)

curl -fsSL https://raw.githubusercontent.com/FarhanAliRaza/claude-context-local/main/scripts/install.sh | bash

If your system doesn't have curl, you can use wget:

wget -qO- https://raw.githubusercontent.com/FarhanAliRaza/claude-context-local/main/scripts/install.sh | bash

Update existing installation

Run the same install command to update:

curl -fsSL https://raw.githubusercontent.com/FarhanAliRaza/claude-context-local/main/scripts/install.sh | bash

The installer will:

  • Detect your existing installation
  • Preserve your embeddings and indexed projects in ~/.claude_code_search
  • Stash any local changes automatically (if running via curl)
  • Update the code and dependencies

What the installer does

  • Installs uv if missing and creates a project venv
  • Clones/updates claude-context-local in ~/.local/share/claude-context-local
  • Installs Python dependencies with uv sync
  • Downloads the EmbeddingGemma model (~1.2–1.3 GB) if not already cached
  • Tries to install faiss-gpu if an NVIDIA GPU is detected (interactive mode only)
  • Preserves all your indexed projects and embeddings across updates

Quick Start

1) Register the MCP server (stdio)

claude mcp add code-search --scope user -- uv run --directory ~/.local/share/claude-context-local python mcp_server/server.py

Then open Claude Code; the server will run in stdio mode inside the uv environment.

2) Index your codebase

Open Claude Code and say: index this codebase. No manual commands needed.

3) Use in Claude Code

Interact via chat inside Claude Code; no function calls or commands are required.

Architecture

claude-context-local/
├── chunking/                         # Multi-language chunking (15 extensions)
│   ├── multi_language_chunker.py     # Unified orchestrator (Python AST + tree-sitter)
│   ├── python_ast_chunker.py         # Python-specific chunking (rich metadata)
│   └── tree_sitter.py                # Tree-sitter: JS/TS/JSX/TSX/Svelte/Go/Java/Rust/C/C++/C#
├── embeddings/
│   └── embedder.py                   # EmbeddingGemma; device=auto (CUDA→MPS→CPU); offline cache
├── search/
│   ├── indexer.py                    # FAISS index (CPU by default; GPU when available)
│   ├── searcher.py                   # Intelligent ranking & filters
│   └── incremental_indexer.py        # Merkle-driven incremental indexing
├── merkle/
│   ├── merkle_dag.py                 # Content-hash DAG of the workspace
│   ├── change_detector.py            # Diffs snapshots to find changed files
│   └── snapshot_manager.py           # Snapshot persistence & stats
├── mcp_server/
│   └── server.py                     # MCP tools for Claude Code (stdio/HTTP)
└── scripts/
    ├── install.sh                    # One-liner remote installer (uv + model + faiss)
    ├── download_model_standalone.py  # Pre-fetch embedding model
    └── index_codebase.py             # Standalone indexing utility

Data flow

graph TD
    A["Claude Code (MCP client)"] -->|index_directory| B["MCP Server"]
    B --> C{IncrementalIndexer}
    C --> D["ChangeDetector<br/>(Merkle DAG)"]
    C --> E["MultiLanguageChunker"]
    E --> F["Code Chunks"]
    C --> G["CodeEmbedder<br/>(EmbeddingGemma)"]
    G --> H["Embeddings"]
    C --> I["CodeIndexManager<br/>(FAISS CPU/GPU)"]
    H --> I
    D --> J["SnapshotManager"]
    C --> J
    B -->|search_code| K["Searcher"]
    K --> I

Intelligent Chunking

The system uses advanced parsing to create semantically meaningful chunks across all supported languages:

Chunking Strategies

  • Python: AST-based parsing for rich metadata extraction
  • All other languages: Tree-sitter parsing with language-specific node type recognition

Chunk Types Extracted

  • Functions/Methods: Complete with signatures, docstrings, decorators
  • Classes/Structs: Full definitions with member functions as separate chunks
  • Interfaces/Traits: Type definitions and contracts
  • Enums/Constants: Value definitions and module-level declarations
  • Namespaces/Modules: Organizational structures
  • Templates/Generics: Parameterized type definitions

Rich Metadata for All Languages

  • File path and folder structure
  • Function/class/type names and relationships
  • Language-specific features (async, generics, modifiers, etc.)
  • Parent-child relationships (methods within classes)
  • Line numbers for precise code location
  • Semantic tags (component, export, async, etc.)

Configuration

Environment Variables

  • CODE_SEARCH_STORAGE: Custom storage directory (default: ~/.claude_code_search)

Model Configuration

The system uses google/embeddinggemma-300m by default.

Notes:

  • Download size: ~1.2–2 GB on disk depending on variant and caches
  • Device selection: auto (CUDA on NVIDIA, MPS on Apple Silicon, else CPU)
  • You can pre-download via installer or at first use
  • FAISS backend: CPU by default. If an NVIDIA GPU is detected, the installer attempts to install faiss-gpu-cu12 (or faiss-gpu-cu11) and the index will run on GPU automatically at runtime while saving as CPU for portability.

Hugging Face authentication (if prompted)

The google/embeddinggemma-300m model is hosted on Hugging Face and may require accepting terms and/or authentication to download.

  1. Visit the model page and accept any terms:

    • https://huggingface.co/google/embeddinggemma-300m
  2. Authenticate one of the following ways:

    • CLI (recommended):

      uv run huggingface-cli login
      # Paste your token from https://huggingface.co/settings/tokens
      
    • Environment variable:

      export HUGGING_FACE_HUB_TOKEN=hf_XXXXXXXXXXXXXXXXXXXXXXXX
      

After the first successful download, we cache the model under ~/.claude_code_search/models and prefer offline loads for speed and reliability.

Supported Languages & Extensions

Fully Supported (15 extensions across 9+ languages):

Language Extensions
Python .py
JavaScript .js, .jsx
TypeScript .ts, .tsx
Java .java
Go .go
Rust .rs
C .c
C++ .cpp, .cc, .cxx, .c++
C# .cs
Svelte .svelte

Total: 15 file extensions across 9+ programming languages

Storage

Data is stored in the configured storage directory:

~/.claude_code_search/
├── models/          # Downloaded models
├── index/           # FAISS indices and metadata
│   ├── code.index   # Vector index
│   ├── metadata.db  # Chunk metadata (SQLite)
│   └── stats.json   # Index statistics

Performance

  • Model size: ~1.2GB (EmbeddingGemma-300m and caches)
  • Embedding dimension: 768 (can be reduced for speed)
  • Index types: Flat (exact) or IVF (approximate) based on dataset size
  • Batch processing: Configurable batch sizes for embedding generation

Tips:

  • First index on a large repo will take time (model load + chunk + embed). Subsequent runs are incremental.
  • With GPU FAISS, searches on large indexes are significantly faster.
  • Embeddings automatically use CUDA (NVIDIA) or MPS (Apple) if available.

Troubleshooting

Common Issues

  1. Import errors: Ensure all dependencies are installed with uv sync
  2. Model download fails: Check internet connection and disk space
  3. Memory issues: Reduce batch size in indexing script
  4. No search results: Verify the codebase was indexed successfully
  5. FAISS GPU not used: Ensure nvidia-smi is available and CUDA drivers are installed; re-run installer to pick faiss-gpu-cu12/cu11.
  6. Force offline: We auto-detect a local cache and prefer offline loads; you can also set HF_HUB_OFFLINE=1.

Ignored directories (for speed and noise reduction)

node_modules, .venv, venv, env, .env, .direnv, __pycache__, .pytest_cache, .mypy_cache, .ruff_cache, .pytype, .ipynb_checkpoints, build, dist, out, public, .next, .nuxt, .svelte-kit, .angular, .astro, .vite, .cache, .parcel-cache, .turbo, coverage, .coverage, .nyc_output, .gradle, .idea, .vscode, .docusaurus, .vercel, .serverless, .terraform, .mvn, .tox, target, bin, obj

Contributing

This is a research project focused on intelligent code chunking and search. Feel free to experiment with:

  • Different chunking strategies
  • Alternative embedding models
  • Enhanced metadata extraction
  • Performance optimizations

License

Licensed under the GNU General Public License v3.0 (GPL-3.0). See the LICENSE file for details.

Inspiration

This project draws inspiration from zilliztech/claude-context. I adapted the concepts to a Python implementation with fully local embeddings.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured