Claude Code Gemini MCP
Enables Claude Code to call Gemini models through an OpenAI-compatible API, providing tools for deep analysis, brainstorming, code review, and general queries using Gemini's capabilities.
README
Claude Code Gemini MCP
MCP Server that enables Claude Code to call Gemini models through OpenAI-compatible API.
Installation
git clone https://github.com/shun-sfoo/claude-code-gemini-mcp.git
cd claude-code-gemini-mcp
npm install
npm run build
Configuration
Environment Variables
| Variable | Description | Required |
|---|---|---|
GEMINI_API_KEY |
Your API key | Yes |
GEMINI_BASE_URL |
API endpoint (OpenAI-compatible) | Yes |
GEMINI_MODEL |
Model ID (default: gemini-3-pro-preview) |
No |
Claude Code Integration
Add to your project's .mcp.json:
{
"mcpServers": {
"gemini": {
"command": "node",
"args": ["/path/to/claude-code-gemini-mcp/dist/index.js"],
"env": {
"GEMINI_API_KEY": "your-api-key",
"GEMINI_BASE_URL": "https://your-api-endpoint/v1",
"GEMINI_MODEL": "gemini-3-pro-preview"
}
}
}
}
Or add to global settings (~/.claude/settings.json).
Available Tools
gemini_think
Deep analysis and reasoning for complex problems.
Parameters:
problem(string, required) - The problem to analyzecontext(string, optional) - Background informationthinkingStyle(string, optional) - One of:analytical,creative,critical,systematic
gemini_brainstorm
Generate multiple creative ideas with pros and cons.
Parameters:
topic(string, required) - The topic to brainstormconstraints(string, optional) - Constraints or requirementscount(number, optional) - Number of ideas, 3-10 (default: 5)
gemini_review
Code, architecture, security, or performance review.
Parameters:
content(string, required) - Content to reviewreviewType(string, required) - One of:code,architecture,security,performancefocus(string, optional) - Specific aspects to focus on
gemini_query
General purpose query with full control.
Parameters:
prompt(string, required) - The prompt to sendsystemPrompt(string, optional) - System prompttemperature(number, optional) - 0-2 (default: 0.7)
Testing
# Create .env file first
cp .env.example .env
# Edit .env with your credentials
# Run tests
npm test
Development
npm run dev # Watch mode
npm run build # Build
npm test # Run tests
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.