
Chat Analysis
Facilitates semantic analysis of chat conversations through vector embeddings and knowledge graphs, offering tools for semantic search, concept extraction, and conversation pattern analysis.
rebots-online
README
MCP Chat Analysis Server
A Model Context Protocol (MCP) server that enables semantic analysis of chat conversations through vector embeddings and knowledge graphs. This server provides tools for analyzing chat data, performing semantic search, extracting concepts, and analyzing conversation patterns.
Key Features
- 🔍 Semantic Search: Find relevant messages and conversations using vector similarity
- 🕸️ Knowledge Graph: Navigate relationships between messages, concepts, and topics
- 📊 Conversation Analytics: Analyze patterns, metrics, and conversation dynamics
- 🔄 Flexible Import: Support for various chat export formats
- 🚀 MCP Integration: Easy integration with Claude and other MCP-compatible systems
Quick Start
# Install the package
pip install mcp-chat-analysis-server
# Set up configuration
cp config.example.yml config.yml
# Edit config.yml with your database settings
# Run the server
python -m mcp_chat_analysis.server
MCP Integration
Add to your claude_desktop_config.json
:
{
"mcpServers": {
"chat-analysis": {
"command": "python",
"args": ["-m", "mcp_chat_analysis.server"],
"env": {
"QDRANT_URL": "http://localhost:6333",
"NEO4J_URL": "bolt://localhost:7687",
"NEO4J_USER": "neo4j",
"NEO4J_PASSWORD": "your-password"
}
}
}
}
Available Tools
import_conversations
Import and analyze chat conversations
{
"source_path": "/path/to/export.zip",
"format": "openai_native" # or html, markdown, json
}
semantic_search
Search conversations by semantic similarity
{
"query": "machine learning applications",
"limit": 10,
"min_score": 0.7
}
analyze_metrics
Analyze conversation metrics
{
"conversation_id": "conv-123",
"metrics": [
"message_frequency",
"response_times",
"topic_diversity"
]
}
extract_concepts
Extract and analyze concepts
{
"conversation_id": "conv-123",
"min_relevance": 0.5,
"max_concepts": 10
}
Architecture
See ARCHITECTURE.md for detailed diagrams and documentation of:
- System components and interactions
- Data flow and processing pipeline
- Storage schema and vector operations
- Tool integration mechanism
Prerequisites
- Python 3.8+
- Neo4j database for knowledge graph storage
- Qdrant vector database for semantic search
- sentence-transformers for embeddings
Installation
- Install the package:
pip install mcp-chat-analysis-server
- Set up databases:
# Using Docker (recommended)
docker compose up -d
- Configure the server:
cp .env.example .env
# Edit .env with your settings
Development
- Clone the repository:
git clone https://github.com/rebots-online/mcp-chat-analysis-server.git
cd mcp-chat-analysis-server
- Install development dependencies:
pip install -e ".[dev]"
- Run tests:
pytest tests/
Contributing
- Fork the repository
- Create a feature branch
- Submit a pull request
See CONTRIBUTING.md for guidelines.
License
MIT License - See LICENSE file for details.
Related Projects
Support
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Mult Fetch MCP Server
A versatile MCP-compliant web content fetching tool that supports multiple modes (browser/node), formats (HTML/JSON/Markdown/Text), and intelligent proxy detection, with bilingual interface (English/Chinese).
AIO-MCP Server
🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from
Persistent Knowledge Graph
An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.
Hyperbrowser MCP Server
Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to