Chat Analysis

Chat Analysis

Facilitates semantic analysis of chat conversations through vector embeddings and knowledge graphs, offering tools for semantic search, concept extraction, and conversation pattern analysis.

rebots-online

Programming Docs Access
AI Memory Systems
Content Fetching
Database Interaction
AI Content Generation
AI Integration Systems
Data & App Analysis
Visit Server

README

MCP Chat Analysis Server

A Model Context Protocol (MCP) server that enables semantic analysis of chat conversations through vector embeddings and knowledge graphs. This server provides tools for analyzing chat data, performing semantic search, extracting concepts, and analyzing conversation patterns.

Key Features

  • 🔍 Semantic Search: Find relevant messages and conversations using vector similarity
  • 🕸️ Knowledge Graph: Navigate relationships between messages, concepts, and topics
  • 📊 Conversation Analytics: Analyze patterns, metrics, and conversation dynamics
  • 🔄 Flexible Import: Support for various chat export formats
  • 🚀 MCP Integration: Easy integration with Claude and other MCP-compatible systems

Quick Start

# Install the package
pip install mcp-chat-analysis-server

# Set up configuration
cp config.example.yml config.yml
# Edit config.yml with your database settings

# Run the server
python -m mcp_chat_analysis.server

MCP Integration

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "chat-analysis": {
      "command": "python",
      "args": ["-m", "mcp_chat_analysis.server"],
      "env": {
        "QDRANT_URL": "http://localhost:6333",
        "NEO4J_URL": "bolt://localhost:7687",
        "NEO4J_USER": "neo4j",
        "NEO4J_PASSWORD": "your-password"
      }
    }
  }
}

Available Tools

import_conversations

Import and analyze chat conversations

{
    "source_path": "/path/to/export.zip",
    "format": "openai_native"  # or html, markdown, json
}

semantic_search

Search conversations by semantic similarity

{
    "query": "machine learning applications",
    "limit": 10,
    "min_score": 0.7
}

analyze_metrics

Analyze conversation metrics

{
    "conversation_id": "conv-123",
    "metrics": [
        "message_frequency",
        "response_times",
        "topic_diversity"
    ]
}

extract_concepts

Extract and analyze concepts

{
    "conversation_id": "conv-123",
    "min_relevance": 0.5,
    "max_concepts": 10
}

Architecture

See ARCHITECTURE.md for detailed diagrams and documentation of:

  • System components and interactions
  • Data flow and processing pipeline
  • Storage schema and vector operations
  • Tool integration mechanism

Prerequisites

  • Python 3.8+
  • Neo4j database for knowledge graph storage
  • Qdrant vector database for semantic search
  • sentence-transformers for embeddings

Installation

  1. Install the package:
pip install mcp-chat-analysis-server
  1. Set up databases:
# Using Docker (recommended)
docker compose up -d
  1. Configure the server:
cp .env.example .env
# Edit .env with your settings

Development

  1. Clone the repository:
git clone https://github.com/rebots-online/mcp-chat-analysis-server.git
cd mcp-chat-analysis-server
  1. Install development dependencies:
pip install -e ".[dev]"
  1. Run tests:
pytest tests/

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Submit a pull request

See CONTRIBUTING.md for guidelines.

License

MIT License - See LICENSE file for details.

Related Projects

Support

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Mult Fetch MCP Server

Mult Fetch MCP Server

A versatile MCP-compliant web content fetching tool that supports multiple modes (browser/node), formats (HTML/JSON/Markdown/Text), and intelligent proxy detection, with bilingual interface (English/Chinese).

Featured
Local
AIO-MCP Server

AIO-MCP Server

🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from

Featured
Local
Persistent Knowledge Graph

Persistent Knowledge Graph

An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.

Featured
Local
Hyperbrowser MCP Server

Hyperbrowser MCP Server

Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to

Featured
Local