Chart MCP Server

Chart MCP Server

Provides 15 types of chart generation tools (line, bar, pie, radar, word cloud, mind map, etc.) with AI-powered intelligent color schemes and elegant design.

Category
Visit Server

README

图表MCP服务器

一个基于 Model Context Protocol (MCP) 的图表生成服务器,提供15种不同类型的图表生成功能,支持AI智能配色和优雅设计。

复刻:https://www.modelscope.cn/mcp/servers/antvis/mcp-server-chart

功能特性

本服务器提供以下15种图表生成工具:

  1. generate_area_chart - 生成面积图
  2. generate_bar_chart - 生成柱状图(水平)
  3. generate_column_chart - 生成柱状图(垂直)
  4. generate_dual_axes_chart - 生成双轴图表
  5. generate_fishbone_diagram - 生成鱼骨图(因果分析图)
  6. generate_flow_diagram - 生成流程图
  7. generate_histogram_chart - 生成直方图
  8. generate_line_chart - 生成线图
  9. generate_mind_map - 生成思维导图
  10. generate_network_graph - 生成网络图
  11. generate_pie_chart - 生成饼图
  12. generate_radar_chart - 生成雷达图
  13. generate_scatter_chart - 生成散点图
  14. generate_treemap_chart - 生成树形图
  15. generate_word_cloud_chart - 生成词云图

🎨 AI智能配色

  • 自动配色: AI根据图表类型和数据上下文自动选择优雅配色方案
  • 主题系统: 内置5种优雅配色主题(海洋蓝、日落、森林、紫色、珊瑚)
  • 智能映射: 不同类型的数据自动匹配最适合的颜色主题
  • 自定义支持: 可通过palette参数指定特定调色板

安装依赖

pip install -e .

或使用 pip 安装依赖:

pip install fastmcp plotly pandas kaleido pillow wordcloud matplotlib numpy

运行服务器

python src/main_optimized.py

使用示例

折线图(AI自动配色)

data = [
    {"date": "12-17", "temperature": 5},
    {"date": "12-18", "temperature": 3},
    {"date": "12-19", "temperature": 2}
]

result = generate_line_chart(
    data=data,
    x_field="date",
    y_field="temperature",
    title="温度变化趋势"
)

柱状图(AI自动配色)

data = [
    {"month": "1月", "sales": 120},
    {"month": "2月", "sales": 98},
    {"month": "3月", "sales": 145}
]

result = generate_column_chart(
    data=data,
    x_field="month",
    y_field="sales",
    title="月度销售额统计"
)

饼图(AI自动配色)

data = [
    {"category": "移动端", "value": 45},
    {"category": "桌面端", "value": 30},
    {"category": "平板", "value": 15}
]

result = generate_pie_chart(
    data=data,
    label_field="category",
    value_field="value",
    title="市场份额分布"
)

双轴图(AI自动配色)

data = [
    {"month": "1月", "revenue": 120, "users": 1000},
    {"month": "2月", "revenue": 150, "users": 1200},
    {"month": "3月", "revenue": 180, "users": 1500}
]

result = generate_dual_axes_chart(
    data=data,
    x_field="month",
    y1_field="revenue",
    y2_field="users",
    title="收入与用户增长对比"
)

输出说明

所有图表工具返回的结果格式如下:

{
    "success": True,           # 是否成功
    "image_url": "http://127.0.0.1:8081/xxx.png", # 图像URL
    "message": "生成成功"       # 消息
}

如果生成失败:

{
    "success": False,
    "error": "错误信息"
}

图像访问

  • 静态文件服务器: http://127.0.0.1:8081/
  • 访问限制: 仅允许访问.png格式文件
  • 安全提示: 访问非PNG文件将返回404错误

图像文件

  • 所有生成的图像保存在 images/ 目录中
  • 文件名格式:{chart_type}_YYYYMMDD_XXXXXXXX.png
  • 图像分辨率:1400x900,2倍缩放(高清晰度)

技术栈

  • FastMCP - MCP服务器框架
  • Plotly - 交互式图表库
  • Pandas - 数据处理
  • Matplotlib - 静态图表绘制
  • WordCloud - 词云生成
  • NetworkX - 网络图生成
  • Kaleido - 图像导出引擎

设计特性

  • 优雅边框: 只显示左边和下边框,移除重复边框线
  • 现代配色: 采用现代UI设计趋势的配色方案
  • 响应式布局: 图表布局自适应不同数据量
  • 高清晰度: 2倍缩放确保在各种设备上清晰显示

注意事项

  1. 确保已安装 kaleido 库,用于将 Plotly 图表导出为图像
  2. 首次运行可能需要安装系统字体(用于 Matplotlib)
  3. 图像文件会保存在 images/ 目录中,请确保有写入权限
  4. 服务器启动后会同时启动图像静态文件服务器(端口8081)

许可证

MIT License

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured