ChainAware Behavioural Prediction MCP Server
The Behavioural Prediction MCP Server provides AI-powered tools to analyze wallet behaviour prediction,fraud detection and rug pull prediction.
README
🧠 ChainAware Behavioural Prediction MCP Server
MCP Server Name: ChainAware Behavioural Prediction MCP
Category: Web3 / Security / DeFi Analytics
Status: Public tools – Private backend
Access: By request (API key)
Server URL: [https://prediction.mcp.chainaware.ai/sse]
Repository: [https://github.com/ChainAware/behavioral-prediction-mcp]
Website: [https://chainaware.ai/]
Twitter: [https://x.com/ChainAware/]
<!-- MCP --> mcp-name: io.github.ChainAware/chainaware-behavioral-prediction-mcp
📖 Description
The Behavioural Prediction MCP Server provides AI-powered tools to analyze wallet behaviour prediction,fraud detection and rug pull prediction.
Developers and platforms can integrate these tools through the MCP protocol to safeguard DeFi users, monitor liquidity risks, and score wallet or contract trustworthiness.
All tools follow the Model Context Protocol (MCP) and can be consumed via MCP-compatible clients.
⚙️ Available Tools
1. Predictive Fraud Detection Tool
ID: predictive_fraud
Description: This AI‑powered algorithm forecasts the likelihood of fraudulent activity on a given wallet address before it happens (≈98% accuracy), and performs AML/Anti‑Money‑Laundering checks. Use this when your user wants a risk assessment or early‑warning on a blockchain address.
➡️ Example Use Cases:
• Is it safe to intercant with vitalik.eth ?
• What is the fraudulent status of this address ?
• Is my new wallet at risk of being used for fraud?
Inputs:
| Name | Type | Required | Description |
|---|---|---|---|
apiKey |
string | ✅ | API key for authentication |
network |
string | ✅ | Blockchain network (ETH, BNB,POLYGON,TON,BASE, TRON, HAQQ) |
walletAddress |
string | ✅ | The wallet address to evaluate |
Outputs (JSON):
{
"message": "string", // Human‑readable status message
"walletAddress": "string", // hex address
"status": "Fraud", // Fraudelent status (Fraud,Not Fraud,New Address)
"probabilityFraud": "0.00–1.00", // Decimal probability
"token": "string", //
"lastChecked": "ISO‑8601 timestamp",
"forensic_details": { // Deep forensic breakdown
/* ...other metrics... */
},
"createdAt": "ISO‑8601 timestamp",
"updatedAt": "ISO‑8601 timestamp"
}
Error cases:
• `403 Unauthorized` → invalid `apiKey`
• `400 Bad Request` → malformed `network` or `walletAddress`
• `500 Internal Server Error` → temporary downstream failure
2. Predictive Behaviour Analysis Tool
ID: predictive_behaviour
Description: This AI‑driven engine projects what a wallet address intentions or what address is likely to do next, profiles its past on‑chain history, and recommends personalized actions.
Use this when you need:
• Next‑best‑action predictions and intentions(“Will this address deposit, trade, or stake?”)
• A risk‑tolerance and experience profile
• Category segmentation (e.g. NFT, DeFi, Bridge usage)
• Custom recommendations based on historical patterns
➡️ Example Use Cases:
• “What will this address do next?”
• “Is the user high‑risk or experienced?”
• “Recommend the best DeFi strategies for 0x1234... on ETH network.”
Inputs:
| Name | Type | Required | Description |
|---|---|---|---|
apiKey |
string | ✅ | API key for authentication |
network |
string | ✅ | Blockchain network (ETH, BNB,BASE,HAQQ) |
walletAddress |
string | ✅ | The wallet address to evaluate |
Outputs (JSON):
{
"message": "string", // e.g. “Success” or error text
"walletAddress": "string", // echoed input
"status": "string", // Fraudelent status (Fraud,Not Fraud,New Address)
"probabilityFraud": "0.00–1.00", // decimal fraud score
"lastChecked": "ISO‑8601 timestamp", // e.g. “2025‑01‑03T16:19:13.000Z”
"forensic_details": { /* dict of forensic metrics */ },
"categories": [ { "Category":"string", "Count":int }, … ],
"riskProfile": [ { "Category":"string", "Balance_age":float }, … ],
"segmentInfo": "JSON‑string of segment counts",
"experience": { "Type":"Experience", "Value":int },
"intention": {
"Type":"Intentions",
"Value": { "Prob_Trade":"High", "Prob_Stake":"Medium", … }
},
"protocols": [ { "Protocol":"string","Count":int }, … ],
"recommendation": { "Type":"Recommendation", "Value":[ "string", … ] },
"createdAt": "ISO‑8601 timestamp",
"updatedAt": "ISO‑8601 timestamp"
}
Error cases:
• `403 Unauthorized` → invalid `apiKey`
• `400 Bad Request` → malformed `network` or `walletAddress`
• `500 Internal Server Error` → temporary downstream failure
3. Predictive Rug‑Pull Detection Tool
ID: predictive_rug_pull
Description: This AI‑powered engine forecasts which liquidity pools or contracts are likely to perform a “rug pull” in the future. Use this when you need to warn users before they deposit into risky pools or to monitor smart‑contract security on-chain.
➡️ Example Use Cases:
• “Will this new DeFi pool rug‑pull if I stake my assets?”
• “Monitor my LP position for potential future exploits.”
Inputs:
| Name | Type | Required | Description |
|---|---|---|---|
apiKey |
string | ✅ | API key for authentication |
network |
string | ✅ | Blockchain network (ETH, BNB, BASE, HAQQ) |
walletAddress |
string | ✅ | Smart contract or liquidity pool address |
Outputs (JSON):
{
"message": "Success",
"contractAddress": "0x1234...",
"status": "Fraud",
"probabilityFraud": 0.87,
"lastChecked": "2025-10-25T12:45:00Z",
"forensic_details": { /* dict of on‑chain metrics */ },
"createdAt": "2025-10-25T12:45:00Z",
"updatedAt": "2025-10-25T12:45:00Z"
}
Error cases:
• `403 Unauthorized` → invalid `apiKey`
• `400 Bad Request` → malformed `network` or `walletAddress`
• `500 Internal Server Error` → temporary downstream failure
🧠 Example Client Usage
Node.js Example
import { MCPClient } from "mcp-client";
const client = new MCPClient("https://prediction.mcp.chainaware.ai/");
const result = await client.call("predictive_rug_pull", {
apiKey: "your_api_key",
network: "BNB",
walletAddress: "0x1234..."
});
console.log(result);
Python Example
from mcp_client import MCPClient
client = MCPClient("https://prediction.mcp.chainaware.ai/")
res = client.call("chat", {"query": "What is the rug pull risk of 0x1234?"})
print(res)
Service Configuration:
"type": "sse",
"config": {
"mcpServers": {
"chainaware-behavioural_prediction_mcp": {
"type": "sse",
"url": "https://prediction.mcp.chainaware.ai/sse",
"description": "The Behavioural Prediction MCP Server provides AI-powered tools to analyze wallet behaviour prediction,fraud detection and rug pull prediction.",
"headers":{
"x-api-key":""
},
"params":{
"walletAddress":"",
"network":""
},
"auth": {
"type": "api_key",
"header": "X-API-Key"
}
}
}
}
}
🔌 Integration Notes
- ✅ Compatible with MCP clients across Node.js, Python, and browser-based environments
- 🔁 Uses Server-Sent Events (SSE) for streaming / real-time responses
- 📐 JSON schemas conform to the MCP specification
- 🚦 Rate limits may apply depending on usage tier
- 🔑 API key required for production endpoints
Claude Code (CLI) Configuration
Use the Claude CLI to register the MCP server via SSE transport:
claude mcp add --transport sse chainaware-behavioural-prediction-mcp-server https://prediction.mcp.chainaware.ai/sse \
--header "X-API-Key: your-key-here"
📚 Documentation: https://code.claude.com/docs/en/mcp
ChatGPT Connector Configuration
Available in ChatGPT environments that support Connectors / MCP (Developer Mode).
Steps
- Open ChatGPT Settings
- Navigate to Apps / Connectors
- Click Add Connector
- Enter the integration name and URL below
- Save the configuration
Integration Details
Name
ChainAware Behavioural Prediction MCP Server
Integration URL
https://prediction.mcp.chainaware.ai/sse?apiKey=your-key-here
Claude Web & Claude Desktop Configuration
Steps
- Open Claude Web or Claude Desktop
- Go to Settings → Integrations
- Click Add integration
- Enter the name and URL below
- Click Add to complete setup
Integration Details
Name
ChainAware Behavioural Prediction MCP Server
Integration URL
https://prediction.mcp.chainaware.ai/sse?apiKey=your-key-here
📚 Documentation: https://platform.claude.com/docs/en/agents-and-tools/remote-mcp-servers
Cursor Configuration
Add the MCP server to your Cursor configuration file (e.g. mcp.json):
{
"mcpServers": {
"chainaware-behavioural-prediction-mcp-server": {
"url": "https://prediction.mcpbeta.chainaware.ai/sse",
"transport": "sse",
"headers": {
"X-API-Key": "your-key-here"
}
}
}
}
📚 Documentation: https://cursor.com/docs/context/mcp
🔐 Security Notes
- Do not hard-code API keys in public repositories
- Prefer environment variables or secret managers when supported
- Rotate keys regularly in production environments
🔒 Access Policy
The MCP server requires an API key for production usage. To request access:
- You can subscribe to listed available plans via: https://chainaware.ai/pricing
🧾 License
MIT (for client examples). Server implementation and backend logic are proprietary and remain private.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.