CentralMind Gateway
MCP-Server from your Database optimized for LLMs and AI-Agents. Supports PostgreSQL, MySQL, ClickHouse, Snowflake, MSSQL, BigQuery, Oracle Database, SQLite, ElasticSearch, DuckDB
centralmind
README
<div align="center">
<a href="https://discord.gg/XFhaUG4F5x"><img src="https://dcbadge.limes.pink/api/server/https://discord.gg/XFhaUG4F5x" height="20"></a> <a href="https://t.me/+TM3T1SikjzA4ZWVi"><img src="https://img.shields.io/badge/telegram-%E2%9D%A4%EF%B8%8F-252850?style=plastic&logo=telegram" height=20></a> <a href="https://docs.centralmind.ai"><img src="https://img.shields.io/badge/Full%20Documentation-blue?style=for-the-badge&logo=rocket&logoColor=white" height="20"></a>
</div>
<h2 align="center">CentralMind Gateway: Create API or MCP Server in Minutes</h2>
🚀 Interactive Demo via GitHub Codespaces
What is Centralmind/Gateway
Simple way to expose your database to AI-Agent via MCP or OpenAPI 3.1 protocols.
docker run --platform linux/amd64 -p 9090:9090 \
ghcr.io/centralmind/gateway:v0.2.6 start \
--connection-string "postgres://db-user:db-password@db-host/db-name?sslmode=require"
This will run for you an API:
INFO Gateway server started successfully!
INFO MCP SSE server for AI agents is running at: http://localhost:9090/sse
INFO REST API with Swagger UI is available at: http://localhost:9090/
Which you can use inside your AI Agent:
Gateway will generate AI optimized API.
Why Centralmind/Gateway
AI agents and LLM-powered applications need fast, secure access to data, but traditional APIs and databases aren't built for this purpose. We're building an API layer that automatically generates secure, LLM-optimized APIs for your structured data.
Our solution:
- Filters out PII and sensitive data to ensure compliance with GDPR, CPRA, SOC 2, and other regulations
- Adds traceability and auditing capabilities, ensuring AI applications aren't black boxes and security teams maintain control
- Optimizes for AI workloads, supporting Model Context Protocol (MCP) with enhanced meta information to help AI agents understand APIs, along with built-in caching and security features
Our primary users are companies deploying AI agents for customer support, analytics, where they need models to access the data without direct SQL access to databases elemenating security, compliance and peformance risks.
Features
- ⚡ Automatic API Generation – Creates APIs automatically using LLM based on table schema and sampled data
- 🗄️ Structured Database Support – Supports <a href="https://docs.centralmind.ai/connectors/postgres/">PostgreSQL</a>, <a href="https://docs.centralmind.ai/connectors/mysql/">MySQL</a>, <a href="https://docs.centralmind.ai/connectors/clickhouse/">ClickHouse</a>, <a href="https://docs.centralmind.ai/connectors/snowflake/">Snowflake</a>, <a href="https://docs.centralmind.ai/connectors/mssql/">MSSQL</a>, <a href="https://docs.centralmind.ai/connectors/bigquery/">BigQuery</a>, <a href="https://docs.centralmind.ai/connectors/oracle/">Oracle Database</a>, <a href="https://docs.centralmind.ai/connectors/sqlite/">SQLite</a>, <a href="https://docs.centralmind.ai/connectors/sqlite/">ElasticSearch</a>
- 🌍 Multiple Protocol Support – Provides APIs as REST or MCP Server including SSE mode
- 📜 API Documentation – Auto-generated Swagger documentation and OpenAPI 3.1.0 specification
- 🔒 PII Protection – Implements <a href="https://docs.centralmind.ai/plugins/pii_remover/">regex plugin</a> or <a href="https://docs.centralmind.ai/plugins/presidio_anonymizer/">Microsoft Presidio plugin</a> for PII and sensitive data redaction
- ⚡ Flexible Configuration – Easily extensible via YAML configuration and plugin system
- 🐳 Deployment Options – Run as a binary or Docker container with ready-to-use <a href="https://docs.centralmind.ai/helm/gateway/">Helm chart</a>
- 🤖 Multiple AI Providers Support - Support for OpenAI, Anthropic, Amazon Bedrock, Google Gemini & Google VertexAI
- 📦 Local & On-Premises – Support for <a href="https://docs.centralmind.ai/providers/local-models/">self-hosted LLMs</a> through configurable AI endpoints and models
- 🔑 Row-Level Security (RLS) – Fine-grained data access control using <a href="https://docs.centralmind.ai/plugins/lua_rls/">Lua scripts</a>
- 🔐 Authentication Options – Built-in support for <a href="https://docs.centralmind.ai/plugins/api_keys/">API keys</a> and <a href="https://docs.centralmind.ai/plugins/oauth/">OAuth</a>
- 👀 Comprehensive Monitoring – Integration with <a href="https://docs.centralmind.ai/plugins/otel/">OpenTelemetry (OTel)</a> for request tracking and audit trails
- 🏎️ Performance Optimization – Implements time-based and <a href="https://docs.centralmind.ai/plugins/lru_cache/">LRU caching</a> strategies
How it Works
<div align="center">
</div>
1. Connect & Discover
Gateway connects to your structured databases like PostgreSQL and automatically analyzes the schema and data samples to generate an optimized API structure based on your prompt. LLM is used only on discovery stage to produce API configuration. The tool uses AI Providers to generate the API configuration while ensuring security through PII detection.
2. Deploy
Gateway supports multiple deployment options from standalone binary, docker or <a href="https://docs.centralmind.ai/example/k8s/">Kubernetes</a>. Check our <a href="https://docs.centralmind.ai/docs/content/getting-started/launching-api/">launching guide</a> for detailed instructions. The system uses YAML configuration and plugins for easy customization.
3. Use & Integrate
Access your data through REST APIs or Model Context Protocol (MCP) with built-in security features. Gateway seamlessly integrates with AI models and applications like <a href="https://docs.centralmind.ai/docs/content/integration/langchain/">LangChain</a>, <a href="https://docs.centralmind.ai/docs/content/integration/chatgpt/">OpenAI</a> and <a href="https://docs.centralmind.ai/docs/content/integration/claude-desktop/">Claude Desktop</a> using function calling or <a href="https://docs.centralmind.ai/docs/content/integration/cursor/">Cursor</a> through MCP. You can also <a href="https://docs.centralmind.ai/plugins/otel/">setup telemetry</a> to local or remote destination in otel format.
Documentation
Getting Started
- <a href="https://docs.centralmind.ai/docs/content/getting-started/quickstart/">Quickstart Guide</a>
- <a href="https://docs.centralmind.ai/docs/content/getting-started/installation/">Installation Instructions</a>
- <a href="https://docs.centralmind.ai/docs/content/getting-started/generating-api/">API Generation Guide</a>
- <a href="https://docs.centralmind.ai/docs/content/getting-started/launching-api/">API Launch Guide</a>
Additional Resources
- <a href="https://docs.centralmind.ai/docs/content/integration/chatgpt/">ChatGPT Integration Guide</a>
- <a href="https://docs.centralmind.ai/connectors/">Database Connector Documentation</a>
- <a href="https://docs.centralmind.ai/plugins/">Plugin Documentation</a>
How to Build
# Clone the repository
git clone https://github.com/centralmind/gateway.git
# Navigate to project directory
cd gateway
# Install dependencies
go mod download
# Build the project
go build .
API Generation
Gateway uses LLM models to generate your API configuration. Follow these steps:
- Choose one of our supported AI providers:
- OpenAI and all OpenAI-compatible providers
- Anthropic
- Amazon Bedrock
- Google Vertex AI (Anthropic)
- Google Gemini
Google Gemini provides a generous free tier. You can obtain an API key by visiting Google AI Studio:
Once logged in, you can create an API key in the API section of AI Studio. The free tier includes a generous monthly token allocation, making it accessible for development and testing purposes.
Configure AI provider authorization. For Google Gemini, set an API key.
export GEMINI_API_KEY='yourkey'
- Run the discovery command:
./gateway discover \
--ai-provider gemini \
--connection-string "postgresql://neondb_owner:MY_PASSWORD@MY_HOST.neon.tech/neondb?sslmode=require" \
--prompt "Generate for me awesome readonly API"
- Monitor the generation process:
INFO 🚀 API Discovery Process
INFO Step 1: Read configs
INFO ✅ Step 1 completed. Done.
INFO Step 2: Discover data
INFO Discovered Tables:
INFO - payment_dim: 3 columns, 39 rows
INFO - fact_table: 9 columns, 1000000 rows
INFO ✅ Step 2 completed. Done.
# Additional steps and output...
INFO ✅ All steps completed. Done.
INFO --- Execution Statistics ---
INFO Total time taken: 1m10s
INFO Tokens used: 16543 (Estimated cost: $0.0616)
INFO Tables processed: 6
INFO API methods created: 18
INFO Total number of columns with PII data: 2
- Review the generated configuration in
gateway.yaml
:
api:
name: Awesome Readonly API
description: ''
version: '1.0'
database:
type: postgres
connection: YOUR_CONNECTION_INFO
tables:
- name: payment_dim
columns: # Table columns
endpoints:
- http_method: GET
http_path: /some_path
mcp_method: some_method
summary: Some readable summary
description: 'Some description'
query: SQL Query with params
params: # Query parameters
Running the API
Run locally
./gateway start --config gateway.yaml rest
Docker Compose
docker compose -f ./example/simple/docker-compose.yml up
MCP Protocol Integration
Gateway implements the MCP protocol for seamless integration with Claude and other tools. For detailed setup instructions, see our <a href="https://docs.centralmind.ai/docs/content/integration/claude-desktop/">Claude integration guide</a>.
- Build the gateway binary:
go build .
- Configure Claude Desktop tool configuration:
{
"mcpServers": {
"gateway": {
"command": "PATH_TO_GATEWAY_BINARY",
"args": ["start", "--config", "PATH_TO_GATEWAY_YAML_CONFIG", "mcp-stdio"]
}
}
}
Roadmap
It is always subject to change, and the roadmap will highly depend on user feedback. At this moment, we are planning the following features:
Database and Connectivity
- 🗄️ Extended Database Integrations - Redshift, S3 (Iceberg and Parquet), Oracle DB, Microsoft SQL Server, Elasticsearch
- 🔑 SSH tunneling - ability to use jumphost or ssh bastion to tunnel connections
Enhanced Functionality
- 🔍 Advanced Query Capabilities - Complex filtering syntax and Aggregation functions as parameters
- 🔐 Enhanced MCP Security - API key and OAuth authentication
Platform Improvements
- 📦 Schema Management - Automated schema evolution and API versioning
- 🚦 Advanced Traffic Management - Intelligent rate limiting, Request throttling
- ✍️ Write Operations Support - Insert, Update operations
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
AIO-MCP Server
🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from
Persistent Knowledge Graph
An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.
Hyperbrowser MCP Server
Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to
React MCP
react-mcp integrates with Claude Desktop, enabling the creation and modification of React apps based on user prompts
Atlassian Integration
Model Context Protocol (MCP) server for Atlassian Cloud products (Confluence and Jira). This integration is designed specifically for Atlassian Cloud instances and does not support Atlassian Server or Data Center deployments.