BYOB MCP Server

BYOB MCP Server

Enables AI agents to dynamically discover and invoke containerized tools that can be registered at runtime without redeployment. Built on Cloudflare Workers with scale-to-zero containers for secure, isolated tool execution.

Category
Visit Server

README

BYOB MCP Server πŸš€

Bring Your Own Binary: A dynamic MCP server built on Cloudflare Workers, Containers, and D1.

Enables AI agents to discover and invoke containerized tools registered at runtimeβ€”no redeployment needed.

Quick Start

# Install dependencies
npm install

# Start local dev server
npm run dev

# In another terminal, test the API
bash test-api.sh

# Deploy to production
npm run deploy

What This Is

A proof-of-concept demonstrating:

  • βœ… Dynamic Tool Registry - Tools stored in D1, queried by MCP server
  • βœ… Containerized Execution - Each tool runs in isolated Cloudflare Container
  • βœ… MCP Protocol - AI agents discover tools via Model Context Protocol
  • βœ… HTTP Registration API - Register new tools without redeploying
  • βœ… Scale-to-Zero - Containers only run when tools are invoked

Architecture

AI Agent (Claude) ──[MCP]──> Cloudflare Worker ──[HTTP]──> Universal Container
                                    β”‚                         (ToolRunner)
                                    └──[SQL]──> D1 Registry
                                                              Supports:
                                                              β€’ Echo
                                                              β€’ Uppercase
                                                              β€’ JQ
                                                              β€’ Git Clone

Pre-Built Demo Tools

All four tools run in a single universal container:

  1. echo_message - Echoes back any JSON input
  2. why_are_we_yelling - Converts text to UPPERCASE
  3. query_json - Processes JSON with jq filters
  4. summarize_repo_readme - Clones a GitHub repo and summarizes its README

API Endpoints

GET /

Health check and server info

GET /api/tools

List all registered tools

POST /api/register-tool

Register a new tool

{
  "name": "my_tool",
  "description": "What this tool does",
  "containerClass": "echo",
  "schema": {
    "type": "object",
    "properties": {
      "input": {"type": "string"}
    }
  }
}

POST /mcp

MCP protocol endpoint (connect your AI agent here)

Example: Register a Tool

curl -X POST http://localhost:8787/api/register-tool \
  -H "Content-Type: application/json" \
  -d '{
    "name": "whisper",
    "description": "Echoes message in lowercase",
    "containerClass": "toolrunner",
    "schema": {
      "type": "object",
      "properties": {
        "message": {"type": "string"}
      },
      "required": ["message"]
    }
  }'

Connect to Claude Desktop

Edit your Claude Desktop config:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "byob-server": {
      "url": "http://localhost:8787/mcp"
    }
  }
}

Restart Claude Desktop, then ask:

  • "What tools do you have available?"
  • "Can you echo the message 'Hello BYOB!'?"
  • "Use why_are_we_yelling with text: hello world"
  • "Summarize the README from https://github.com/fiberplane/mcp-lite"

Documentation

Project Structure

β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ index.ts          # Main Worker + MCP server
β”‚   β”œβ”€β”€ containers.ts     # Container class definitions
β”‚   └── types.ts          # TypeScript interfaces
β”œβ”€β”€ containers/
β”‚   β”œβ”€β”€ Dockerfile        # Universal container image
β”‚   β”œβ”€β”€ server.js         # Multi-tool HTTP server
β”‚   └── README.md         # Container documentation
β”œβ”€β”€ migrations/
β”‚   β”œβ”€β”€ 0001_initial_schema.sql
β”‚   └── 0002_seed_example_tools.sql
└── wrangler.jsonc        # Cloudflare configuration

Adding New Tools

Since all tools use the same universal container, adding new tools is simple:

Option 1: Via API (No redeployment needed)

curl -X POST http://localhost:8787/api/register-tool \
  -H "Content-Type: application/json" \
  -d '{"name":"my_tool", "description":"...", ...}'

Option 2: Extend the Container

To add new operation types:

  1. Edit containers/server.js to handle new input patterns
  2. Add new tool definitions to migrations/0002_seed_example_tools.sql
  3. Redeploy

The single container approach keeps things simple for demos while still demonstrating the BYOB architecture.

Technology Stack

  • Runtime: Cloudflare Workers (V8 Isolates)
  • MCP: mcp-lite (not @modelcontextprotocol/sdk)
  • Web Framework: Hono
  • Database: Cloudflare D1 (SQLite)
  • Containers: Cloudflare Containers (Durable Objects)
  • Schema: Zod + JSON Schema

Deployment

Local Development

npm run dev
# Server runs on http://localhost:8787

Production Deployment

  1. Run migrations on remote database:
npx wrangler d1 execute byob-tools-registry --remote \
  --file=./migrations/0001_initial_schema.sql
npx wrangler d1 execute byob-tools-registry --remote \
  --file=./migrations/0002_seed_example_tools.sql
  1. Deploy Worker and Containers:
npm run deploy

Note: First deployment takes 2-5 minutes to build Docker images.

  1. Update Claude Desktop config with your production URL:
{
  "mcpServers": {
    "byob-server": {
      "url": "https://byob-mcp-server.YOUR_ACCOUNT.workers.dev/mcp"
    }
  }
}

Testing

# Automated API tests
bash test-api.sh

# Manual health check
curl http://localhost:8787/

# List tools
curl http://localhost:8787/api/tools | jq

# Test MCP protocol
curl -X POST http://localhost:8787/mcp \
  -H "Content-Type: application/json" \
  -d '{"jsonrpc":"2.0","id":1,"method":"tools/list","params":{}}'

Key Features

Dynamic Discovery

Tools registered in D1 appear immediately to all connected AI agentsβ€”no redeployment required.

Secure Isolation

Each container runs in an isolated sandbox with resource limits and ephemeral storage.

Serverless Scale

Containers scale to zero when idle. Pay only for actual tool invocations.

Standard Interface

All containers expose POST /execute endpoint accepting/returning JSON.

Limitations

Container classes must be defined at deploy time in wrangler.jsonc. True runtime BYOB would require automatic Worker rebuild/redeploy when new containers are registered.

Workaround: Multiple logical tools can share the same container class, allowing significant flexibility without redeployment.

Resources

License

MIT - Built for hackathon demonstration

Contributing

This is a hackathon prototype. For questions or suggestions, open an issue!


Built with ☁️ Cloudflare Workers | 🐳 Containers | πŸ—„οΈ D1 | πŸ€– MCP

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured