
Building a Twitter Trends Analysis MCP Server for ClaudeBuilding a Twitter Trends Analysis MCP Server for Claude
Muralikrishankp
README
Building a Twitter Trends Analysis MCP Server for Claude
This tutorial will guide you through creating a Model Context Protocol (MCP) server that connects Twitter's trending topics with Claude's analysis capabilities. The server will fetch real-time Twitter trends and use Claude to analyze them for business opportunities.
Prerequisites
- Python 3.8 or higher
- Claude Desktop installed
- Twitter Developer Account with API access
- Basic understanding of Python
Part 1: Setting Up the Environment
- Create a new project directory:
mkdir twitter-trends-mcp
cd twitter-trends-mcp
- Set up a virtual environment:
python -m venv .venv
.venv\Scripts\activate # On Windows
- Install required packages:
pip install tweepy mcp python-dotenv hatchling
Part 2: Project Structure
Create the following directory structure:
twitter-trends-mcp/
├── pyproject.toml
├── twitter_server_run.py
├── src/
│ └── twitter_trends_mcp/
│ ├── __init__.py
│ └── server.py
Part 3: Configuration Files
- Create
pyproject.toml
in the root directory:
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[project]
name = "twitter-trends-mcp"
version = "0.1.0"
description = "Twitter Trends MCP Server"
requires-python = ">=3.8"
dependencies = [
"tweepy",
"mcp",
"python-dotenv"
]
[tool.hatch.build]
packages = ["src/twitter_trends_mcp"]
include = ["src/twitter_trends_mcp/*"]
[project.scripts]
twitter-trends-server = "twitter_trends_mcp:main"
- Create
src/twitter_trends_mcp/__init__.py
:
"""Twitter Trends MCP Server package."""
import asyncio
from . import server
def main():
"""Main entry point for the package."""
asyncio.run(server.main())
__all__ = ['main', 'server']
- Create entry point file
twitter_server_run.py
:
#!/usr/bin/env python
import os
import sys
import logging
from pathlib import Path
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('twitter_server.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger('twitter-trends-mcp')
# Add the src directory to the Python path
src_path = str(Path(__file__).parent / "src")
sys.path.insert(0, src_path)
logger.info(f"Python path: {sys.path}")
try:
from twitter_trends_mcp.server import main
logger.info("Successfully imported server module")
except Exception as e:
logger.error(f"Error importing server module: {e}")
raise
if __name__ == "__main__":
try:
logger.info("Starting server...")
import asyncio
asyncio.run(main())
except KeyboardInterrupt:
logger.info("Server stopped by user")
except Exception as e:
logger.error(f"Server error: {e}")
raise
Part 4: Twitter API Setup
- Go to Twitter Developer Portal
- Create a new project and app
- Get your API credentials:
- API Key
- API Secret
- Access Token
- Access Token Secret
- Bearer Token
Part 5: MCP Server Implementation
Create src/twitter_trends_mcp/server.py
with the complete server code, including:
- API client initialization
- Trend fetching logic
- Resource and tool handlers
- Analysis integration with Claude
Key components:
# Initialize Twitter clients
client_v2 = tweepy.Client(...)
auth = tweepy.OAuthHandler(...)
api_v1 = tweepy.API(auth)
# Define server capabilities
app = Server("twitter-trends-server")
# Implement handlers
@app.list_resources()
async def list_resources() -> list[Resource]: ...
@app.read_resource()
async def read_resource(uri: AnyUrl) -> str: ...
@app.list_tools()
async def list_tools() -> list[Tool]: ...
@app.call_tool()
async def call_tool(name: str, arguments: Any) -> Sequence[TextContent]: ...
Part 6: Claude Desktop Configuration
-
Locate your Claude Desktop config file:
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
-
Update the configuration:
{
"mcpServers": {
"twitter-trends": {
"command": "C:\\Users\\YOUR_USERNAME\\twitter-trends-mcp\\.venv\\Scripts\\python.exe",
"args": ["C:\\Users\\YOUR_USERNAME\\twitter-trends-mcp\\twitter_server_run.py"],
"env": {
"PYTHONPATH": "C:\\Users\\YOUR_USERNAME\\twitter-trends-mcp\\src",
"PYTHONUNBUFFERED": "1"
},
"cwd": "C:\\Users\\YOUR_USERNAME\\twitter-trends-mcp"
}
}
}
Part 7: Running and Testing
- Install the package:
pip install -e .
- Run server:
python twitter_server_run.py
-
In Claude Desktop:
- Click the 🔌 icon
- Look for "twitter-trends"
- Try: "Analyze current Twitter trends for SaaS opportunities"
-
Monitor logs:
Get-Content twitter_server.log -Wait
Troubleshooting Tips
-
Common Issues:
- Module not found: Check PYTHONPATH
- Connection errors: Verify paths in config
- API errors: Validate credentials
- Server not responding: Check logs
-
Log Locations:
- Server:
twitter_server.log
- Claude:
%APPDATA%\Claude\Logs\mcp*.log
- Server:
Features
- Real-time trend fetching
- Category-based analysis
- Business opportunity identification
- AI-powered insights
- Detailed logging
Best Practices
- Use absolute paths
- Keep credentials secure
- Monitor logs
- Test incrementally
- Use virtual environments
Next Steps
- Add trend history
- Implement sentiment analysis
- Support more regions
- Add business metrics
- Enhance analysis categories
Recommended Servers
Crypto Price & Market Analysis MCP Server
A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.
MCP PubMed Search
Server to search PubMed (PubMed is a free, online database that allows users to search for biomedical and life sciences literature). I have created on a day MCP came out but was on vacation, I saw someone post similar server in your DB, but figured to post mine.
dbt Semantic Layer MCP Server
A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.
mixpanel
Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.

Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Nefino MCP Server
Provides large language models with access to news and information about renewable energy projects in Germany, allowing filtering by location, topic (solar, wind, hydrogen), and date range.
Vectorize
Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.
Mathematica Documentation MCP server
A server that provides access to Mathematica documentation through FastMCP, enabling users to retrieve function documentation and list package symbols from Wolfram Mathematica.
kb-mcp-server
An MCP server aimed to be portable, local, easy and convenient to support semantic/graph based retrieval of txtai "all in one" embeddings database. Any txtai embeddings db in tar.gz form can be loaded
Research MCP Server
The server functions as an MCP server to interact with Notion for retrieving and creating survey data, integrating with the Claude Desktop Client for conducting and reviewing surveys.