BMAD-MCP
Orchestrates complete agile development workflows from product requirements to QA testing through role-based stages (PO → Architect → SM → Dev → Review → QA). Manages workflow state, generates role-specific prompts, and saves artifacts while integrating with multiple AI engines for comprehensive project delivery.
README
BMAD-MCP
Business-Minded Agile Development workflow orchestrator as an MCP (Model Context Protocol) server.
Complete agile development workflow: PO → Architect → SM → Dev → Review → QA
Interactive Requirements Gathering - Asks clarifying questions to ensure complete requirements Dynamic Engine Selection - Uses Claude by default, dual-engine when needed Content Reference System - Efficient token usage via file references Human-Readable Task Names - Organizes by task name, not UUID
🎯 What is BMAD-MCP?
BMAD-MCP is a lightweight workflow orchestrator that manages the complete agile development process. It:
- Manages workflow state (which stage you're in, what's needed next)
- Dispatches role prompts (provides detailed prompts for each role)
- Saves artifacts (PRD, architecture, code, reports)
- Does NOT call LLMs (that's Claude Code's job)
🏗️ Architecture
User → Claude Code → bmad-mcp tool
↓
Returns: {
stage: "po",
role_prompt: "<complete PO prompt>",
engines: ["claude", "codex"],
context: {...}
}
↓
Claude Code executes:
- Calls Claude (with role_prompt)
- Calls Codex MCP (with role_prompt)
↓
Claude Code submits results → bmad-mcp
↓
bmad-mcp: merges, scores, saves, advances to next stage
📋 Workflow Stages
| Stage | Role | Engines | Description |
|---|---|---|---|
| PO | Product Owner | Claude + Codex | Requirements analysis (merge both) |
| Architect | System Architect | Claude + Codex | Technical design (merge both) |
| SM | Scrum Master | Claude | Sprint planning |
| Dev | Developer | Codex | Code implementation |
| Review | Code Reviewer | Codex | Code review |
| QA | QA Engineer | Codex | Testing and quality assurance |
🚀 Quick Start
Installation (3 Steps)
# Step 1: Install globally from npm
npm install -g bmad-mcp
# Step 2: Add to Claude Code
claude mcp add-json --scope user bmad '{"type":"stdio","command":"bmad-mcp"}'
# Step 3: Verify installation
bmad-mcp
# Expected output: "BMAD MCP Server running on stdio"
That's it! Restart Claude Code and you're ready to use BMAD workflow.
Usage Example
Simply tell Claude Code to use BMAD:
User: Use bmad-task to create a user authentication system
Claude Code will:
1. Start BMAD workflow (PO stage)
2. Generate Product Requirements Document (with interactive Q&A)
3. Generate System Architecture (with interactive Q&A)
4. Create Sprint Plan
5. Implement code (using Codex)
6. Perform code review
7. Run quality assurance tests
All artifacts saved to: .claude/specs/user-authentication-system/
Configuration Location
MCP configuration is automatically added to ~/.claude/config.json:
{
"mcpServers": {
"bmad": {
"type": "stdio",
"command": "bmad-mcp"
}
}
}
🔧 Advanced Installation
Option 1: NPM Install (Recommended)
npm install -g bmad-mcp
claude mcp add-json --scope user bmad '{"type":"stdio","command":"bmad-mcp"}'
Option 2: Build from Source
git clone https://github.com/cexll/bmad-mcp-server
cd bmad-mcp-server
npm install
npm run build
npm link # Makes bmad-mcp globally available
# Add to Claude Code
claude mcp add-json --scope user bmad '{"type":"stdio","command":"bmad-mcp"}'
Verify Installation
# Check if binary is available
which bmad-mcp
# Output: /usr/local/bin/bmad-mcp (or similar)
# Test the server directly
bmad-mcp
# Expected output: "BMAD MCP Server running on stdio"
# Press Ctrl+C to exit
# Restart Claude Code to load the configuration
Uninstall
# Remove from Claude Code
claude mcp remove bmad
# Uninstall npm package
npm uninstall -g bmad-mcp
📖 Usage
Basic Workflow
// 1. Start workflow
const startResult = await callTool("bmad-task", {
action: "start",
cwd: "/path/to/your/project",
objective: "Implement user login system"
});
const { session_id, task_name, role_prompt, engines } = JSON.parse(startResult.content[0].text);
// 2. Execute with engines
if (engines.includes("claude")) {
const claudeResult = await callClaude(role_prompt);
}
if (engines.includes("codex")) {
const codexResult = await callCodexMCP(role_prompt);
}
// 3. Submit results
await callTool("bmad-task", {
action: "submit",
session_id: session_id,
stage: "po",
claude_result: claudeResult,
codex_result: codexResult
});
// 4. Confirm and proceed (unified: saves + advances to next stage)
await callTool("bmad-task", {
action: "confirm",
session_id: session_id,
confirmed: true
});
Actions
start - Start a new workflow
{
"action": "start",
"cwd": "/path/to/project",
"objective": "Project description"
}
Returns:
{
"session_id": "uuid",
"task_name": "project-description",
"stage": "po",
"state": "generating",
"stage_description": "Product Owner - Requirements Analysis",
"requires_user_confirmation": true,
"interaction_type": "awaiting_generation",
"user_message": "📋 **BMAD 工作流已启动**...",
"role_prompt": "<complete prompt>",
"engines": ["claude"],
"context": {...},
"pending_user_actions": ["review_and_confirm_generation"]
}
submit - Submit stage results
{
"action": "submit",
"session_id": "uuid",
"stage": "po",
"claude_result": "...",
"codex_result": "..."
}
Returns (if score >= 90):
{
"session_id": "uuid",
"stage": "po",
"state": "awaiting_confirmation",
"score": 92,
"requires_user_confirmation": true,
"interaction_type": "user_decision",
"user_message": "✅ **PRD生成完成**\n质量评分:92/100...",
"final_draft_summary": "...",
"final_draft_file": ".bmad-task/temp/uuid/po_final_result_xxx.md",
"pending_user_actions": ["confirm", "reject_and_refine"]
}
Returns (if score < 90 with clarification questions):
{
"session_id": "uuid",
"stage": "po",
"state": "clarifying",
"current_score": 75,
"requires_user_confirmation": true,
"interaction_type": "user_decision",
"user_message": "⚠️ **需求澄清...**",
"gaps": ["Target user group unclear", "..."],
"questions": [{"id": "q1", "question": "...", "context": "..."}],
"pending_user_actions": ["answer_questions"]
}
confirm - Confirm and save (unified action)
{
"action": "confirm",
"session_id": "uuid",
"confirmed": true
}
Returns (saves artifact + advances to next stage):
{
"session_id": "uuid",
"stage": "architect",
"state": "generating",
"requires_user_confirmation": true,
"interaction_type": "awaiting_generation",
"user_message": "💾 **文档已保存,并已进入下一阶段**...",
"role_prompt": "<architect prompt>",
"engines": ["claude"],
"previous_artifact": ".claude/specs/task-name/01-product-requirements.md",
"pending_user_actions": ["review_and_confirm_generation"]
}
answer - Answer clarification questions
{
"action": "answer",
"session_id": "uuid",
"answers": {
"q1": "Target users are enterprise B2B customers",
"q2": "Expected 10k concurrent users with <200ms response time"
}
}
Returns:
{
"session_id": "uuid",
"stage": "po",
"state": "refining",
"requires_user_confirmation": true,
"interaction_type": "awaiting_regeneration",
"user_message": "📝 **已收到你的回答**...",
"role_prompt": "<updated prompt with user answers>",
"engines": ["claude"],
"pending_user_actions": ["regenerate_with_answers"]
}
approve - Approve current stage (SM stage only)
{
"action": "approve",
"session_id": "uuid",
"approved": true
}
Returns (when entering Dev stage):
{
"session_id": "uuid",
"stage": "dev",
"state": "generating",
"requires_user_confirmation": true,
"interaction_type": "awaiting_generation",
"user_message": "✅ **Sprint Plan 已批准**\n\n正在进入下一阶段:Developer - Implementation\n\nSprint Plan 包含 3 个 Sprint:\n1. Sprint 1: 基础架构\n2. Sprint 2: 核心功能\n3. Sprint 3: 优化和完善\n\n⚠️ 重要:请明确指示开发范围...",
"role_prompt": "<dev prompt>",
"engines": ["codex"],
"pending_user_actions": ["specify_sprint_scope_then_generate"]
}
Important - Dev Stage Behavior:
- After approving Sprint Plan, workflow enters Dev stage but does NOT auto-start development
- User must explicitly specify development scope:
- "开始开发" / "start development" → Implements ALL sprints (default)
- "开发 Sprint 1" / "implement sprint 1" → Implements only Sprint 1
- This ensures users have full control over what gets implemented and when
status - Query workflow status
{
"action": "status",
"session_id": "uuid"
}
Returns:
{
"session_id": "uuid",
"current_stage": "dev",
"current_state": "generating",
"stages": {...},
"artifacts": [...]
}
📁 File Structure
Your Project
your-project/
├── .bmad-task/
│ ├── session-abc-123.json # Workflow state (with content references)
│ ├── task-mapping.json # Maps session_id → task_name
│ └── temp/
│ └── abc-123/ # Temporary content files
│ ├── po_claude_result_xxx.md
│ ├── po_codex_result_xxx.md
│ └── po_final_result_xxx.md
├── .claude/
│ └── specs/
│ └── implement-user-login/ # Task name (human-readable slug)
│ ├── 01-product-requirements.md
│ ├── 02-system-architecture.md
│ ├── 03-sprint-plan.md
│ ├── 04-dev-reviewed.md
│ └── 05-qa-report.md
└── src/
Session State File
{
"session_id": "abc-123",
"task_name": "implement-user-login",
"cwd": "/path/to/project",
"objective": "Implement user login",
"current_stage": "dev",
"current_state": "generating",
"stages": {
"po": {
"status": "completed",
"claude_result_ref": {
"summary": "First 300 chars...",
"file_path": ".bmad-task/temp/abc-123/po_claude_result_xxx.md",
"size": 12450,
"last_updated": "2025-01-15T10:30:00Z"
},
"final_result_ref": {...},
"score": 92,
"approved": true
},
...
},
"artifacts": [".claude/specs/implement-user-login/01-product-requirements.md", ...]
}
🎨 Engine Configuration
PO & Architect Stages (Dynamic Engine Selection)
- Default: Only Claude (single engine)
- Dual Engine: Enabled when objective contains "codex" or "使用 codex"
- If dual engine enabled:
- Calls both Claude and Codex
- Each generates independent solution
- BMAD-MCP merges results:
- If both ≥ 90: choose higher score
- If one ≥ 90: choose that one
- If both < 90: choose higher score, refine
- Interactive Clarification:
- First iteration: Identify gaps, generate 3-5 clarification questions
- User answers questions
- Regenerate based on answers
- Iterate until score ≥ 90
SM Stage (Claude Only)
- Only calls Claude
- Scrum planning doesn't need Codex
Dev/Review/QA Stages (Codex Only)
- Only calls Codex MCP
- Uses GPT-5 for code tasks
- Important: Use
model: "gpt-5"(NOT "gpt-5-codex") - Parameters:
model: "gpt-5"sandbox: "danger-full-access"approval-policy: "on-failure"
🔄 Workflow Flow
graph TD
A[Start] --> B[PO Stage: Generate]
B --> C{Has Questions?}
C -->|Yes| D[Clarifying: User Answers]
D --> E[Refining: Regenerate]
E --> F{Score >= 90?}
C -->|No| F
F -->|No| C
F -->|Yes| G[Awaiting Confirmation]
G -->|confirm| H[Saved + Architect Stage]
H --> I{Has Questions?}
I -->|Yes| J[Clarifying: User Answers]
J --> K[Refining: Regenerate]
K --> L{Score >= 90?}
I -->|No| L
L -->|No| I
L -->|Yes| M[Awaiting Confirmation]
M -->|confirm| N[Saved + SM Stage]
N -->|approve| O[Dev Stage]
O --> P[Review Stage]
P --> Q[QA Stage]
Q --> R[Complete]
🛠️ Development
Project Structure
bmad-mcp/
├── src/
│ ├── index.ts # Main MCP server
│ └── master-prompt.ts # All role prompts
├── dist/ # Compiled output
├── package.json
├── tsconfig.json
└── README.md
Build
npm run build
Development Mode
npm run dev # Watch mode
Test Locally
npm run build
node dist/index.js
📚 Master Orchestrator Design
All role prompts are embedded in a single master-prompt.ts file:
- Centralized management: All roles in one place
- Workflow definition: Clear stage sequence
- Engine configuration: Which engines for each stage
- Quality gates: Score thresholds and approval points
🤝 Integration with Codex MCP
When calling Codex for Dev/Review/QA stages:
// Claude Code calls Codex MCP
await callTool("codex", {
prompt: role_prompt, // From bmad-task
model: "gpt-5", // IMPORTANT: Use "gpt-5", NOT "gpt-5-codex"
sandbox: "danger-full-access",
"approval-policy": "on-failure"
});
⚙️ Configuration
Quality Thresholds
Defined in master-prompt.ts:
quality_gates: {
po: { min_score: 90, approval_required: true },
architect: { min_score: 90, approval_required: true },
sm: { approval_required: true },
dev: {},
review: {},
qa: {}
}
Artifact Filenames
artifacts: {
po: "01-product-requirements.md",
architect: "02-system-architecture.md",
sm: "03-sprint-plan.md",
dev: "code-implementation",
review: "04-dev-reviewed.md",
qa: "05-qa-report.md"
}
🔍 Troubleshooting
Server not starting
# Check installation
which bmad-mcp
# Test directly
bmad-mcp
Tool name error
- Important: The tool name is
bmad-task, notbmad - Use
callTool("bmad-task", {...})in your code - Claude Code configuration should use
bmad-taskas the tool name
Session not found
- Ensure
.bmad-task/directory has write permissions - Check
session_idis correct - Verify
cwdpath is absolute
Scores not detected
- Ensure generated content includes:
Quality Score: X/100or"quality_score": 92in JSON - Check score format matches pattern (0-100)
- Score ≥ 90 required for PO/Architect stages to advance
Clarification workflow issues
- If you see
state: "clarifying", user must answer questions viaansweraction - Do NOT auto-generate answers - wait for real user input
- Check
requires_user_confirmation: truebefore proceeding
📝 License
MIT
🙋 Support
- Documentation: This README
- Issues: GitHub issues
- Reference: https://github.com/cexll/myclaude
Transform your development with BMAD - One workflow, complete agile process, quality assured.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.