BMAD-MCP

BMAD-MCP

Orchestrates complete agile development workflows from product requirements to QA testing through role-based stages (PO → Architect → SM → Dev → Review → QA). Manages workflow state, generates role-specific prompts, and saves artifacts while integrating with multiple AI engines for comprehensive project delivery.

Category
Visit Server

README

BMAD-MCP

Business-Minded Agile Development workflow orchestrator as an MCP (Model Context Protocol) server.

Complete agile development workflow: PO → Architect → SM → Dev → Review → QA

Interactive Requirements Gathering - Asks clarifying questions to ensure complete requirements Dynamic Engine Selection - Uses Claude by default, dual-engine when needed Content Reference System - Efficient token usage via file references Human-Readable Task Names - Organizes by task name, not UUID


🎯 What is BMAD-MCP?

BMAD-MCP is a lightweight workflow orchestrator that manages the complete agile development process. It:

  • Manages workflow state (which stage you're in, what's needed next)
  • Dispatches role prompts (provides detailed prompts for each role)
  • Saves artifacts (PRD, architecture, code, reports)
  • Does NOT call LLMs (that's Claude Code's job)

🏗️ Architecture

User → Claude Code → bmad-mcp tool
                       ↓
            Returns: {
              stage: "po",
              role_prompt: "<complete PO prompt>",
              engines: ["claude", "codex"],
              context: {...}
            }
                       ↓
Claude Code executes:
  - Calls Claude (with role_prompt)
  - Calls Codex MCP (with role_prompt)
                       ↓
Claude Code submits results → bmad-mcp
                       ↓
bmad-mcp: merges, scores, saves, advances to next stage

📋 Workflow Stages

Stage Role Engines Description
PO Product Owner Claude + Codex Requirements analysis (merge both)
Architect System Architect Claude + Codex Technical design (merge both)
SM Scrum Master Claude Sprint planning
Dev Developer Codex Code implementation
Review Code Reviewer Codex Code review
QA QA Engineer Codex Testing and quality assurance

🚀 Quick Start

Installation (3 Steps)

# Step 1: Install globally from npm
npm install -g bmad-mcp

# Step 2: Add to Claude Code
claude mcp add-json --scope user bmad '{"type":"stdio","command":"bmad-mcp"}'

# Step 3: Verify installation
bmad-mcp
# Expected output: "BMAD MCP Server running on stdio"

That's it! Restart Claude Code and you're ready to use BMAD workflow.

Usage Example

Simply tell Claude Code to use BMAD:

User: Use bmad-task to create a user authentication system

Claude Code will:
1. Start BMAD workflow (PO stage)
2. Generate Product Requirements Document (with interactive Q&A)
3. Generate System Architecture (with interactive Q&A)
4. Create Sprint Plan
5. Implement code (using Codex)
6. Perform code review
7. Run quality assurance tests

All artifacts saved to: .claude/specs/user-authentication-system/

Configuration Location

MCP configuration is automatically added to ~/.claude/config.json:

{
  "mcpServers": {
    "bmad": {
      "type": "stdio",
      "command": "bmad-mcp"
    }
  }
}

🔧 Advanced Installation

Option 1: NPM Install (Recommended)

npm install -g bmad-mcp
claude mcp add-json --scope user bmad '{"type":"stdio","command":"bmad-mcp"}'

Option 2: Build from Source

git clone https://github.com/cexll/bmad-mcp-server
cd bmad-mcp-server
npm install
npm run build
npm link  # Makes bmad-mcp globally available

# Add to Claude Code
claude mcp add-json --scope user bmad '{"type":"stdio","command":"bmad-mcp"}'

Verify Installation

# Check if binary is available
which bmad-mcp
# Output: /usr/local/bin/bmad-mcp (or similar)

# Test the server directly
bmad-mcp
# Expected output: "BMAD MCP Server running on stdio"
# Press Ctrl+C to exit

# Restart Claude Code to load the configuration

Uninstall

# Remove from Claude Code
claude mcp remove bmad

# Uninstall npm package
npm uninstall -g bmad-mcp

📖 Usage

Basic Workflow

// 1. Start workflow
const startResult = await callTool("bmad-task", {
  action: "start",
  cwd: "/path/to/your/project",
  objective: "Implement user login system"
});

const { session_id, task_name, role_prompt, engines } = JSON.parse(startResult.content[0].text);

// 2. Execute with engines
if (engines.includes("claude")) {
  const claudeResult = await callClaude(role_prompt);
}
if (engines.includes("codex")) {
  const codexResult = await callCodexMCP(role_prompt);
}

// 3. Submit results
await callTool("bmad-task", {
  action: "submit",
  session_id: session_id,
  stage: "po",
  claude_result: claudeResult,
  codex_result: codexResult
});

// 4. Confirm and proceed (unified: saves + advances to next stage)
await callTool("bmad-task", {
  action: "confirm",
  session_id: session_id,
  confirmed: true
});

Actions

start - Start a new workflow

{
  "action": "start",
  "cwd": "/path/to/project",
  "objective": "Project description"
}

Returns:

{
  "session_id": "uuid",
  "task_name": "project-description",
  "stage": "po",
  "state": "generating",
  "stage_description": "Product Owner - Requirements Analysis",
  "requires_user_confirmation": true,
  "interaction_type": "awaiting_generation",
  "user_message": "📋 **BMAD 工作流已启动**...",
  "role_prompt": "<complete prompt>",
  "engines": ["claude"],
  "context": {...},
  "pending_user_actions": ["review_and_confirm_generation"]
}

submit - Submit stage results

{
  "action": "submit",
  "session_id": "uuid",
  "stage": "po",
  "claude_result": "...",
  "codex_result": "..."
}

Returns (if score >= 90):

{
  "session_id": "uuid",
  "stage": "po",
  "state": "awaiting_confirmation",
  "score": 92,
  "requires_user_confirmation": true,
  "interaction_type": "user_decision",
  "user_message": "✅ **PRD生成完成**\n质量评分:92/100...",
  "final_draft_summary": "...",
  "final_draft_file": ".bmad-task/temp/uuid/po_final_result_xxx.md",
  "pending_user_actions": ["confirm", "reject_and_refine"]
}

Returns (if score < 90 with clarification questions):

{
  "session_id": "uuid",
  "stage": "po",
  "state": "clarifying",
  "current_score": 75,
  "requires_user_confirmation": true,
  "interaction_type": "user_decision",
  "user_message": "⚠️ **需求澄清...**",
  "gaps": ["Target user group unclear", "..."],
  "questions": [{"id": "q1", "question": "...", "context": "..."}],
  "pending_user_actions": ["answer_questions"]
}

confirm - Confirm and save (unified action)

{
  "action": "confirm",
  "session_id": "uuid",
  "confirmed": true
}

Returns (saves artifact + advances to next stage):

{
  "session_id": "uuid",
  "stage": "architect",
  "state": "generating",
  "requires_user_confirmation": true,
  "interaction_type": "awaiting_generation",
  "user_message": "💾 **文档已保存,并已进入下一阶段**...",
  "role_prompt": "<architect prompt>",
  "engines": ["claude"],
  "previous_artifact": ".claude/specs/task-name/01-product-requirements.md",
  "pending_user_actions": ["review_and_confirm_generation"]
}

answer - Answer clarification questions

{
  "action": "answer",
  "session_id": "uuid",
  "answers": {
    "q1": "Target users are enterprise B2B customers",
    "q2": "Expected 10k concurrent users with <200ms response time"
  }
}

Returns:

{
  "session_id": "uuid",
  "stage": "po",
  "state": "refining",
  "requires_user_confirmation": true,
  "interaction_type": "awaiting_regeneration",
  "user_message": "📝 **已收到你的回答**...",
  "role_prompt": "<updated prompt with user answers>",
  "engines": ["claude"],
  "pending_user_actions": ["regenerate_with_answers"]
}

approve - Approve current stage (SM stage only)

{
  "action": "approve",
  "session_id": "uuid",
  "approved": true
}

Returns (when entering Dev stage):

{
  "session_id": "uuid",
  "stage": "dev",
  "state": "generating",
  "requires_user_confirmation": true,
  "interaction_type": "awaiting_generation",
  "user_message": "✅ **Sprint Plan 已批准**\n\n正在进入下一阶段:Developer - Implementation\n\nSprint Plan 包含 3 个 Sprint:\n1. Sprint 1: 基础架构\n2. Sprint 2: 核心功能\n3. Sprint 3: 优化和完善\n\n⚠️ 重要:请明确指示开发范围...",
  "role_prompt": "<dev prompt>",
  "engines": ["codex"],
  "pending_user_actions": ["specify_sprint_scope_then_generate"]
}

Important - Dev Stage Behavior:

  • After approving Sprint Plan, workflow enters Dev stage but does NOT auto-start development
  • User must explicitly specify development scope:
    • "开始开发" / "start development" → Implements ALL sprints (default)
    • "开发 Sprint 1" / "implement sprint 1" → Implements only Sprint 1
  • This ensures users have full control over what gets implemented and when

status - Query workflow status

{
  "action": "status",
  "session_id": "uuid"
}

Returns:

{
  "session_id": "uuid",
  "current_stage": "dev",
  "current_state": "generating",
  "stages": {...},
  "artifacts": [...]
}

📁 File Structure

Your Project

your-project/
├── .bmad-task/
│   ├── session-abc-123.json          # Workflow state (with content references)
│   ├── task-mapping.json             # Maps session_id → task_name
│   └── temp/
│       └── abc-123/                  # Temporary content files
│           ├── po_claude_result_xxx.md
│           ├── po_codex_result_xxx.md
│           └── po_final_result_xxx.md
├── .claude/
│   └── specs/
│       └── implement-user-login/     # Task name (human-readable slug)
│           ├── 01-product-requirements.md
│           ├── 02-system-architecture.md
│           ├── 03-sprint-plan.md
│           ├── 04-dev-reviewed.md
│           └── 05-qa-report.md
└── src/

Session State File

{
  "session_id": "abc-123",
  "task_name": "implement-user-login",
  "cwd": "/path/to/project",
  "objective": "Implement user login",
  "current_stage": "dev",
  "current_state": "generating",
  "stages": {
    "po": {
      "status": "completed",
      "claude_result_ref": {
        "summary": "First 300 chars...",
        "file_path": ".bmad-task/temp/abc-123/po_claude_result_xxx.md",
        "size": 12450,
        "last_updated": "2025-01-15T10:30:00Z"
      },
      "final_result_ref": {...},
      "score": 92,
      "approved": true
    },
    ...
  },
  "artifacts": [".claude/specs/implement-user-login/01-product-requirements.md", ...]
}

🎨 Engine Configuration

PO & Architect Stages (Dynamic Engine Selection)

  • Default: Only Claude (single engine)
  • Dual Engine: Enabled when objective contains "codex" or "使用 codex"
  • If dual engine enabled:
    • Calls both Claude and Codex
    • Each generates independent solution
    • BMAD-MCP merges results:
      • If both ≥ 90: choose higher score
      • If one ≥ 90: choose that one
      • If both < 90: choose higher score, refine
  • Interactive Clarification:
    • First iteration: Identify gaps, generate 3-5 clarification questions
    • User answers questions
    • Regenerate based on answers
    • Iterate until score ≥ 90

SM Stage (Claude Only)

  • Only calls Claude
  • Scrum planning doesn't need Codex

Dev/Review/QA Stages (Codex Only)

  • Only calls Codex MCP
  • Uses GPT-5 for code tasks
  • Important: Use model: "gpt-5" (NOT "gpt-5-codex")
  • Parameters:
    • model: "gpt-5"
    • sandbox: "danger-full-access"
    • approval-policy: "on-failure"

🔄 Workflow Flow

graph TD
    A[Start] --> B[PO Stage: Generate]
    B --> C{Has Questions?}
    C -->|Yes| D[Clarifying: User Answers]
    D --> E[Refining: Regenerate]
    E --> F{Score >= 90?}
    C -->|No| F
    F -->|No| C
    F -->|Yes| G[Awaiting Confirmation]
    G -->|confirm| H[Saved + Architect Stage]
    H --> I{Has Questions?}
    I -->|Yes| J[Clarifying: User Answers]
    J --> K[Refining: Regenerate]
    K --> L{Score >= 90?}
    I -->|No| L
    L -->|No| I
    L -->|Yes| M[Awaiting Confirmation]
    M -->|confirm| N[Saved + SM Stage]
    N -->|approve| O[Dev Stage]
    O --> P[Review Stage]
    P --> Q[QA Stage]
    Q --> R[Complete]

🛠️ Development

Project Structure

bmad-mcp/
├── src/
│   ├── index.ts              # Main MCP server
│   └── master-prompt.ts      # All role prompts
├── dist/                     # Compiled output
├── package.json
├── tsconfig.json
└── README.md

Build

npm run build

Development Mode

npm run dev  # Watch mode

Test Locally

npm run build
node dist/index.js

📚 Master Orchestrator Design

All role prompts are embedded in a single master-prompt.ts file:

  • Centralized management: All roles in one place
  • Workflow definition: Clear stage sequence
  • Engine configuration: Which engines for each stage
  • Quality gates: Score thresholds and approval points

🤝 Integration with Codex MCP

When calling Codex for Dev/Review/QA stages:

// Claude Code calls Codex MCP
await callTool("codex", {
  prompt: role_prompt,  // From bmad-task
  model: "gpt-5",  // IMPORTANT: Use "gpt-5", NOT "gpt-5-codex"
  sandbox: "danger-full-access",
  "approval-policy": "on-failure"
});

⚙️ Configuration

Quality Thresholds

Defined in master-prompt.ts:

quality_gates: {
  po: { min_score: 90, approval_required: true },
  architect: { min_score: 90, approval_required: true },
  sm: { approval_required: true },
  dev: {},
  review: {},
  qa: {}
}

Artifact Filenames

artifacts: {
  po: "01-product-requirements.md",
  architect: "02-system-architecture.md",
  sm: "03-sprint-plan.md",
  dev: "code-implementation",
  review: "04-dev-reviewed.md",
  qa: "05-qa-report.md"
}

🔍 Troubleshooting

Server not starting

# Check installation
which bmad-mcp

# Test directly
bmad-mcp

Tool name error

  • Important: The tool name is bmad-task, not bmad
  • Use callTool("bmad-task", {...}) in your code
  • Claude Code configuration should use bmad-task as the tool name

Session not found

  • Ensure .bmad-task/ directory has write permissions
  • Check session_id is correct
  • Verify cwd path is absolute

Scores not detected

  • Ensure generated content includes: Quality Score: X/100 or "quality_score": 92 in JSON
  • Check score format matches pattern (0-100)
  • Score ≥ 90 required for PO/Architect stages to advance

Clarification workflow issues

  • If you see state: "clarifying", user must answer questions via answer action
  • Do NOT auto-generate answers - wait for real user input
  • Check requires_user_confirmation: true before proceeding

📝 License

MIT

🙋 Support

  • Documentation: This README
  • Issues: GitHub issues
  • Reference: https://github.com/cexll/myclaude

Transform your development with BMAD - One workflow, complete agile process, quality assured.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured