Blender MCP Bridge
Enables remote control of Blender via the Model Context Protocol, allowing users to execute Python scripts, query scene data, and generate 3D models from images. It provides a bridge for AI clients to interact directly with Blender's internal environment and automate 3D content creation.
README
šØ Blender MCP Bridge
AI-powered Blender control via Model Context Protocol (MCP)
Send images to create 3D models with matching colors, execute Python scripts, and control Blender remotely through Antigravity or any MCP-compatible AI client.
<p align="center"> <img src="https://raw.githubusercontent.com/MITHRAN-BALACHANDER/Blender-MCP-antigravity/main/island_render.png" alt="Low-Poly Island Demo" width="600"/> </p>
⨠Features
| Feature | Description |
|---|---|
| š¼ļø Image to 3D | Extract dominant colors from images and create 3D models with matching materials |
| š Script Execution | Run any Blender Python code remotely through MCP |
| š Scene Query | Get detailed information about objects, materials, and collections |
| ā” Real-time Updates | Receive live progress status during script execution |
| š Thread-safe | Robust architecture with guaranteed responses and no deadlocks |
šļø Architecture
āāāāāāāāāāāāāāāāāāāāāāā MCP/stdio āāāāāāāāāāāāāāāāāāāāāāāāāāā
ā Antigravity āāāāāāāāāāāāāāāāāāāāāāāāŗā antigravity_blender_ ā
ā (or any MCP AI) ā ā server.py ā
āāāāāāāāāāāāāāāāāāāāāāā āāāāāāāāāāāāā¬āāāāāāāāāāāāāā
ā
ā TCP Socket
ā (port 8081)
ā¼
āāāāāāāāāāāāāāāāāāāāāāāāāāā
ā blender_server.py ā
ā (runs inside Blender) ā
āāāāāāāāāāāāāāāāāāāāāāāāāāā
š¦ Installation
Prerequisites
- Python 3.10+
- Blender 4.2+ (with full path accessible)
- pip (Python package manager)
Quick Install
# Clone the repository
git clone https://github.com/MITHRAN-BALACHANDER/Blender-MCP-antigravity.git
cd Blender-MCP-antigravity
# Create virtual environment (recommended)
python -m venv venv
.\venv\Scripts\activate # Windows
source venv/bin/activate # Linux/Mac
# Install dependencies
pip install -r requirements.txt
Install as Package (Optional)
pip install -e .
š Antigravity Integration
Add the following to your Antigravity MCP server configuration:
Option A: Direct Path
{
"mcpServers": {
"blender": {
"command": "python",
"args": ["C:/path/to/Blender-MCP-antigravity/antigravity_blender_server.py"],
"env": {}
}
}
}
Option B: Using Virtual Environment
{
"mcpServers": {
"blender": {
"command": "C:/path/to/Blender-MCP-antigravity/venv/Scripts/python.exe",
"args": ["C:/path/to/Blender-MCP-antigravity/antigravity_blender_server.py"],
"env": {}
}
}
}
Note: Replace
C:/path/to/with your actual installation path.
š Quick Start
Step 1: Start Blender Server
# Navigate to project directory
cd Blender-MCP-antigravity
# Start Blender with the socket server
# Windows (use full path if 'blender' is not in PATH)
"C:\Program Files\Blender Foundation\Blender 4.2\blender.exe" --background --python blender_server.py
# Linux/Mac
blender --background --python blender_server.py
Expected output:
==================================================
[BlenderMCP] Server running on 127.0.0.1:8081
[BlenderMCP] Waiting for connections...
==================================================
Step 2: Connect Antigravity
Once Blender is running, Antigravity will automatically connect via the MCP configuration.
Step 3: Create 3D Content
Ask Antigravity to create 3D content:
"Create a low-poly island scene in Blender"
"Create a 3D model from this image" (with attached image)
š ļø MCP Tools Reference
image_to_3d_model
Create a 3D model with colors extracted from an image.
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
image_data |
string | ā | - | Base64-encoded image |
model_type |
string | ā | "cube" |
Shape: cube, sphere, cylinder |
model_name |
string | ā | "ImageModel" |
Name for the object |
Response:
{
"status": "ok",
"colors": ["#3A7D8C", "#D4C4A0", "#4A6E4A"],
"object_name": "ImageModel"
}
blender_exec
Execute Python code inside Blender.
| Parameter | Type | Required | Description |
|---|---|---|---|
script |
string | ā | Python code to execute |
Script Requirements:
- ā
Define and call a
main()function - ā
Use
send_status("message")for progress updates - ā
Use
bpy.data.*APIs (notbpy.ops.*) - ā No infinite loops or blocking operations
Example:
import bpy
def main():
send_status("Creating cube...")
mesh = bpy.data.meshes.new("Cube")
obj = bpy.data.objects.new("Cube", mesh)
bpy.context.collection.objects.link(obj)
import bmesh
bm = bmesh.new()
bmesh.ops.create_cube(bm, size=2.0)
bm.to_mesh(mesh)
bm.free()
send_status("Done!")
main()
get_blender_scene
Query the current Blender scene.
Response:
{
"objects": [
{"name": "Cube", "type": "MESH"},
{"name": "Camera", "type": "CAMERA"}
],
"meshes": ["Cube"],
"materials": ["Material"],
"collections": ["Collection"]
}
š Project Structure
Blender-MCP-antigravity/
āāā antigravity_blender_server.py # MCP server (AI client interface)
āāā blender_server.py # TCP server (runs in Blender)
āāā antigravity_blender_addon.py # Blender UI addon (optional)
āāā run_via_bridge.py # Standalone script runner
āāā generate_island.py # Example: procedural island
āāā create_island_from_image.py # Example: island from reference
āāā requirements.txt # Dependencies
āāā pyproject.toml # Package config
āāā README.md
š§ Troubleshooting
Connection Refused
# Ensure Blender is running with the server
"C:\Program Files\Blender Foundation\Blender 4.2\blender.exe" --background --python blender_server.py
# Check if port 8081 is in use
netstat -an | findstr 8081 # Windows
lsof -i :8081 # Linux/Mac
Timeout Errors
- Check Blender's console for Python errors
- Ensure
main()is called at the end of your script - Add
send_status()calls for long operations - Avoid blocking calls or infinite loops
Port Already in Use
# Kill existing Blender processes
taskkill /F /IM blender.exe # Windows
pkill blender # Linux/Mac
šÆ Examples
Run the Island Generator
# Activate venv first
.\venv\Scripts\activate
# Run example script
python run_via_bridge.py generate_island.py
Interactive Mode (View Output)
# Start Blender with GUI
"C:\Program Files\Blender Foundation\Blender 4.2\blender.exe" --python blender_server.py
# Then run scripts via bridge
python run_via_bridge.py your_script.py
š¤ Contributing
Contributions are welcome!
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Commit changes:
git commit -m 'Add amazing feature' - Push:
git push origin feature/amazing-feature - Open a Pull Request
š License
MIT License - see LICENSE for details.
š Links
- Repository: github.com/MITHRAN-BALACHANDER/Blender-MCP-antigravity
- Blender: blender.org
- MCP Protocol: modelcontextprotocol.io
- Antigravity: antigravity.dev
<p align="center"> Made with <a href="https://github.com/MITHRAN-BALACHANDER">Mithran Balachander</a> </p>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.