BirdNet-Pi MCP Server
A Python-based server that enables accessing and analyzing bird detection data through the Model Context Protocol, offering features like filtering detections, accessing audio recordings, and generating reports.
DMontgomery40
README
BirdNet-Pi MCP Server
A Python-based Model Context Protocol (MCP) server for BirdNet-Pi integration.
Features
- Bird detection data retrieval with date and species filtering
- Detection statistics and analysis
- Audio recording access
- Daily activity patterns
- Report generation
Requirements
- Python 3.8+
- FastAPI
- Uvicorn
- Other dependencies listed in
requirements.txt
Installation
- Clone the repository:
git clone https://github.com/YourUsername/mcp-server.git
cd mcp-server
- Create a virtual environment and activate it:
python -m venv venv
source venv/bin/activate # On Windows use: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Set up your data directories:
mkdir -p data/audio data/reports
Configuration
The server can be configured using environment variables:
BIRDNET_DETECTIONS_FILE: Path to detections JSON file (default: 'data/detections.json')BIRDNET_AUDIO_DIR: Path to audio files directory (default: 'data/audio')BIRDNET_REPORT_DIR: Path to reports directory (default: 'data/reports')
Running the Server
Start the server:
python server.py
The server will run on http://localhost:8000.
API Endpoints
/functions- List available functions (GET)/invoke- Invoke a function (POST)
Available Functions
-
getBirdDetections- Get bird detections filtered by date range and species
- Parameters: startDate, endDate, species (optional)
-
getDetectionStats- Get detection statistics for a time period
- Parameters: period ('day', 'week', 'month', 'all'), minConfidence (optional)
-
getAudioRecording- Get audio recording for a detection
- Parameters: filename, format ('base64' or 'buffer')
-
getDailyActivity- Get bird activity patterns for a specific day
- Parameters: date, species (optional)
-
generateDetectionReport- Generate a report of detections
- Parameters: startDate, endDate, format ('html' or 'json')
Directory Structure
mcp-server/
├── birdnet/
│ ├── __init__.py
│ ├── config.py
│ ├── functions.py
│ └── utils.py
├── data/
│ ├── audio/
│ └── reports/
├── server.py
├── requirements.txt
└── README.md
Recommended Servers
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Excel MCP Server
A Model Context Protocol server that enables AI assistants to read from and write to Microsoft Excel files, supporting formats like xlsx, xlsm, xltx, and xltm.
Claude Code MCP
An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.
Tavily MCP Server
Provides AI-powered web search capabilities using Tavily's search API, enabling LLMs to perform sophisticated web searches, get direct answers to questions, and search recent news articles.
mixpanel
Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.
Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.
mcp-shodan
MCP server for querying the Shodan API and Shodan CVEDB. This server provides tools for IP lookups, device searches, DNS lookups, vulnerability queries, CPE lookups, and more.
mcp-pinterest
A Pinterest Model Context Protocol (MCP) server for image search and information retrieval
YouTube Transcript MCP Server
This server retrieves transcripts for given YouTube video URLs, enabling integration with Goose CLI or Goose Desktop for transcript extraction and processing.