bio-mcp-evo2
An MCP server that enables AI assistants to generate, score, and analyze DNA sequences using the evo2 genomic foundation model. It supports multiple execution modes including local GPU, SLURM clusters, and the Nvidia NIM cloud API for tasks like variant effect prediction and sequence embedding.
README
bio-mcp-evo2
MCP server for evo2 DNA language model - enabling AI assistants to generate and analyze DNA sequences using state-of-the-art genomic foundation models.
Overview
evo2 is a genomic foundation model capable of:
- Generating DNA sequences with specified properties
- Scoring sequence likelihoods and calculating perplexity
- Extracting learned representations for downstream tasks
- Predicting variant effects on biological function
This MCP server provides multiple execution modes to support various computational environments:
- Local: Direct GPU execution (requires H100 or compatible GPU)
- SBATCH: Submit jobs to SLURM clusters
- Singularity/Docker: Container-based execution
- API: Nvidia NIM cloud API (no local GPU required)
Installation
Local Installation
git clone https://github.com/bio-mcp/bio-mcp-evo2.git
cd bio-mcp-evo2
pip install -e .[dev]
Container Installation
Docker
docker build -t bio-mcp-evo2 .
docker run --gpus all bio-mcp-evo2
Singularity (HPC)
singularity build --fakeroot evo2.sif Singularity.def
singularity run --nv evo2.sif
Configuration
Environment Variables
# Execution mode selection
export BIO_MCP_EVO2_EXECUTION_MODE=api # Options: local, sbatch, singularity, docker, api
# Model configuration
export BIO_MCP_EVO2_MODEL_SIZE=7b # Options: 7b, 40b
export BIO_MCP_EVO2_CUDA_DEVICE=0
# API configuration (for API mode)
export BIO_MCP_EVO2_NIM_API_KEY=your-api-key
# SBATCH configuration (for HPC clusters)
export BIO_MCP_EVO2_SBATCH_PARTITION=gpu
export BIO_MCP_EVO2_SBATCH_TIME=01:00:00
export BIO_MCP_EVO2_SBATCH_MEMORY=64G
export BIO_MCP_EVO2_SBATCH_GPU_TYPE=h100
Claude Desktop Integration
Add to your claude_desktop_config.json:
{
"mcpServers": {
"bio-evo2": {
"command": "python",
"args": ["-m", "src.server"],
"cwd": "/path/to/bio-mcp-evo2",
"env": {
"BIO_MCP_EVO2_EXECUTION_MODE": "api",
"BIO_MCP_EVO2_NIM_API_KEY": "your-api-key"
}
}
}
}
For HPC with Singularity:
{
"mcpServers": {
"bio-evo2": {
"command": "singularity",
"args": ["run", "--nv", "/path/to/evo2.sif"],
"env": {
"BIO_MCP_EVO2_EXECUTION_MODE": "local"
}
}
}
}
Available Tools
evo2_generate
Generate DNA sequences from a prompt.
# Example usage
result = await evo2_generate({
"prompt": "ATCGATCGATCG",
"n_tokens": 100,
"temperature": 1.0,
"top_k": 4
})
evo2_score
Calculate sequence perplexity or get raw logits.
# Example usage
result = await evo2_score({
"sequence": "ATCGATCGATCGATCGATCG",
"return_logits": False
})
evo2_embed
Extract learned representations from sequences.
# Example usage
result = await evo2_embed({
"sequence": "ATCGATCGATCGATCGATCG",
"layer": "blocks.28.mlp.l3"
})
evo2_variant_effect
Predict the effect of mutations.
# Example usage
result = await evo2_variant_effect({
"reference_sequence": "ATCGATCGATCGATCGATCG",
"variant_sequence": "ATCGATCGATCGATCAATCG",
"context_window": 1000
})
Execution Modes
API Mode (Recommended for Getting Started)
No GPU required. Uses Nvidia's hosted API.
export BIO_MCP_EVO2_EXECUTION_MODE=api
export BIO_MCP_EVO2_NIM_API_KEY=your-key
python -m src.server
Local Mode
Requires H100 GPU with sufficient memory.
export BIO_MCP_EVO2_EXECUTION_MODE=local
python -m src.server
SBATCH Mode
For HPC clusters with SLURM.
export BIO_MCP_EVO2_EXECUTION_MODE=sbatch
export BIO_MCP_EVO2_SBATCH_PARTITION=gpu
python -m src.server
Container Modes
For isolated execution environments.
# Docker
export BIO_MCP_EVO2_EXECUTION_MODE=docker
docker run --gpus all -v $PWD:/workspace bio-mcp-evo2
# Singularity
export BIO_MCP_EVO2_EXECUTION_MODE=singularity
singularity run --nv evo2.sif
Examples
Generate a promoter sequence
User: Generate a 200bp DNA sequence that could function as a promoter
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.