Bio-MCP BLAST

Bio-MCP BLAST

Enables AI assistants to perform NCBI BLAST sequence similarity searches through natural language, supporting nucleotide and protein searches, custom database creation, and multiple output formats.

Category
Visit Server

README

Bio-MCP BLAST

๐Ÿ” MCP server for NCBI BLAST sequence similarity search

Enable AI assistants to perform BLAST searches through natural language. Search nucleotide and protein databases, create custom databases, and get formatted results instantly.

๐Ÿงฌ Features

  • blastn - Nucleotide-nucleotide BLAST search
  • blastp - Protein-protein BLAST search
  • makeblastdb - Create custom BLAST databases
  • Multiple output formats - JSON, XML, tabular, pairwise
  • Flexible input - File paths or raw sequences
  • Queue support - Async processing for large searches

๐Ÿš€ Quick Start

Installation

# Install BLAST+
conda install -c bioconda blast

# Or via package manager
# macOS: brew install blast
# Ubuntu: sudo apt-get install ncbi-blast+

# Install MCP server
git clone https://github.com/bio-mcp/bio-mcp-blast.git
cd bio-mcp-blast
pip install -e .

Basic Usage

# Start the server
python -m src.server

# Or with queue support
python -m src.main --mode queue

Configuration

Add to your MCP client config:

{
  "mcpServers": {
    "bio-blast": {
      "command": "python",
      "args": ["-m", "src.server"],
      "cwd": "/path/to/bio-mcp-blast"
    }
  }
}

๐Ÿ’ก Usage Examples

Simple Sequence Search

User: "BLAST this sequence against nr: ATGCGATCGATCG"
AI: [calls blastn] โ†’ Returns top hits with E-values and alignments

File-Based Search

User: "Search proteins.fasta against SwissProt database"
AI: [calls blastp] โ†’ Processes file and returns similarity results

Database Creation

User: "Create a BLAST database from reference_genomes.fasta"
AI: [calls makeblastdb] โ†’ Creates searchable database files

Long-Running Search

User: "BLAST large_dataset.fasta against nt database"
AI: [calls blastn_async] โ†’ "Job submitted! ID: abc123, checking progress..."

๐Ÿ› ๏ธ Available Tools

blastn

Nucleotide-nucleotide BLAST search

Parameters:

  • query (required) - Path to FASTA file or sequence string
  • database (required) - Database name (e.g., "nt", "nr") or path
  • evalue - E-value threshold (default: 10)
  • max_hits - Maximum hits to return (default: 50)
  • output_format - Output format: "tabular", "xml", "json", "pairwise"

blastp

Protein-protein BLAST search

Parameters:

  • Same as blastn, but for protein sequences

makeblastdb

Create BLAST database from FASTA file

Parameters:

  • input_file (required) - Path to FASTA file
  • database_name (required) - Name for output database
  • dbtype (required) - "nucl" or "prot"
  • title - Database title (optional)

Async Variants (Queue Mode)

  • blastn_async - Submit nucleotide search to queue
  • blastp_async - Submit protein search to queue
  • get_job_status - Check job progress
  • get_job_result - Retrieve completed results

โš™๏ธ Configuration

Environment Variables

# Basic settings
export BIO_MCP_MAX_FILE_SIZE=100000000    # 100MB max file size
export BIO_MCP_TIMEOUT=300                # 5 minute timeout
export BIO_MCP_BLAST_PATH="blastn"        # BLAST executable path

# Queue mode settings
export BIO_MCP_QUEUE_URL="http://localhost:8000"

Database Setup

# Download common databases
mkdir -p ~/blast-databases
cd ~/blast-databases

# NCBI databases (large downloads!)
update_blastdb.pl --decompress nt
update_blastdb.pl --decompress nr
update_blastdb.pl --decompress swissprot

# Set environment variable
export BLASTDB=~/blast-databases

๐Ÿณ Docker Deployment

Local Docker

# Build image
docker build -t bio-mcp-blast .

# Run container
docker run -p 5000:5000 \
  -v ~/blast-databases:/data/blast-db:ro \
  -e BLASTDB=/data/blast-db \
  bio-mcp-blast

Docker Compose

services:
  blast-server:
    build: .
    ports:
      - "5000:5000"
    volumes:
      - ./databases:/data/blast-db:ro
    environment:
      - BLASTDB=/data/blast-db
      - BIO_MCP_TIMEOUT=600

๐Ÿ”„ Queue System

For long-running BLAST searches, use the queue system:

Setup

# Start queue infrastructure
cd ../bio-mcp-queue
./setup-local.sh

# Start BLAST server with queue support
python -m src.main --mode queue --queue-url http://localhost:8000

Usage

# Submit async job
job_info = await blast_server.submit_job(
    job_type="blastn",
    parameters={
        "query": "large_sequences.fasta",
        "database": "nt",
        "evalue": 0.001
    }
)

# Check status
status = await blast_server.get_job_status(job_info["job_id"])

# Get results when complete
results = await blast_server.get_job_result(job_info["job_id"])

๐Ÿ“Š Output Formats

Tabular (Default)

# Fields: query_id, subject_id, percent_identity, alignment_length, ...
Query_1    gi|123456    98.5    500    7    0    1    500    1000    1499    1e-180    633

JSON

{
  "BlastOutput2": [{
    "report": {
      "results": {
        "search": {
          "query_title": "Query_1",
          "hits": [...]
        }
      }
    }
  }]
}

XML

Standard BLAST XML format for programmatic parsing.

๐Ÿงช Testing

# Run tests
pytest tests/ -v

# Test with real data
python tests/test_integration.py

# Performance testing
python tests/benchmark.py

๐Ÿ“ˆ Performance Tips

Local Optimization

  • Use SSD storage for databases
  • Increase available RAM
  • Use multiple CPU cores: export BLAST_NUM_THREADS=8

Database Selection

  • Use smaller, specific databases when possible
  • Consider pre-filtering sequences
  • Use appropriate E-value thresholds

Queue Optimization

  • Scale workers based on CPU cores
  • Use separate queues for different database sizes
  • Monitor memory usage with large databases

๐Ÿ” Security

Input Validation

  • File size limits prevent resource exhaustion
  • Path validation prevents directory traversal
  • Command injection protection

Sandboxing

  • Containers run as non-root user
  • Temporary files isolated per job
  • Network access restricted in production

๐Ÿ› Troubleshooting

Common Issues

BLAST not found

# Check installation
which blastn
blastn -version

# Install via conda
conda install -c bioconda blast

Database not found

# Check BLASTDB environment variable
echo $BLASTDB

# List available databases
blastdbcmd -list /path/to/databases

Out of memory

# Reduce max_target_seqs
blastn -max_target_seqs 100

# Use streaming for large outputs
# Increase system swap space

Timeout errors

# Increase timeout
export BIO_MCP_TIMEOUT=3600  # 1 hour

# Or use queue mode for long searches
python -m src.main --mode queue

๐Ÿ“š Resources

๐Ÿค Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Ensure all tests pass
  5. Submit a pull request

See CONTRIBUTING.md for detailed guidelines.

๐Ÿ“„ License

MIT License - see LICENSE file.

๐Ÿ†˜ Support


Happy BLASTing! ๐Ÿงฌ๐Ÿ”

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured