
BiliMind-MCP
An MCP server that generates structured notes from Bilibili videos by automatically downloading audio, transcribing with Whisper, and processing through LLM.
README
BiliMind-MCP
功能特点
- 从B站视频生成结构化笔记
- 支持音频自动下载和转录
- 使用 Whisper 进行语音识别
- 使用 LLM 生成结构化笔记
- 提供 MCP 服务接口
环境准备
系统要求
- Python >= 3.10
- FFmpeg(用于音频处理)
1. 安装系统依赖
# Ubuntu/Debian
sudo apt update && sudo apt install ffmpeg -y
# CentOS/RHEL
sudo yum install ffmpeg -y
2. 安装 uv
# 使用 pip 安装 uv
pip install uv
# 或使用 curl 安装
curl -LsSf https://astral.sh/uv/install.sh | sh
3. 创建并激活虚拟环境
# 创建虚拟环境
uv venv
# 激活虚拟环境
source .venv/bin/activate # Linux/macOS
# 或
.venv\Scripts\activate # Windows
4. 安装项目依赖
uv pip install -r requirements.txt
5. 配置环境变量
# 复制环境变量示例文件
cp .env.example .env
# 编辑 .env 文件,填入必要的配置
nano .env
使用方法
启动 MCP 服务器
python demo/bilimind_mcp.py
API 调用示例
from mcp.client import Client
# 连接到 MCP 服务器
client = Client("bili_note_generator")
# 生成笔记
video_url = "https://www.bilibili.com/video/BVxxxxxx"
notes = await client.generate_bilibili_notes(video_url)
环境变量说明
OPENAI_API_KEY
: LLM API密钥API_BASE
: API基础URLMCP_PORT
: MCP服务器端口(默认8001)DEFAULT_OUTPUT_DIR
: 下载文件保存目录DEFAULT_MODEL_DIR
: 模型文件保存目录WHISPER_MODEL_SIZE
: Whisper模型大小(默认tiny)
注意事项
- 首次运行会自动下载 Whisper 模型文件
- 音频文件会在处理完成后自动删除
- 需要确保有足够的磁盘空间存储临时文件和模型文件
- API调用需要有效的 API 密钥
目录结构
BiliMind-MCP/
├── demo/ # 示例代码
├── tests/ # 测试文件
├── .env.example # 环境变量示例
├── requirements.txt # 项目依赖
└── README.md # 项目文档
致谢
本项目受到 BiliNote 项目的启发。BiliNote 是一个优秀的开源 AI 视频笔记助手,支持多平台视频内容的自动笔记生成。
License
MIT License
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.