Bible MCP Server
Enables AI assistants to retrieve Bible passages from multiple translations (ESV, NIV, KJV, NASB, NKJV, NLT, AMP, MSG). Supports querying single or multiple passages and provides both MCP protocol integration and REST API endpoints.
README
Bible MCP Server
A Model Context Protocol (MCP) server that provides Bible passage retrieval functionality using the mcp-weather core infrastructure.
This server enables AI assistants to access Bible passages from various translations, with both MCP protocol support and REST API endpoints.
Features
The Bible MCP Server provides:
MCP Tools (for AI assistants)
get_passage(passage, version)- Retrieve Bible passages. Supports multiple passages separated by semicolons (e.g., "John 3:16; Romans 8:28").
REST API Endpoints
GET /health- Health checkGET /info- Service informationPOST /passage- Get Bible passageGET /docs- OpenAPI documentation (Swagger UI)
Supported Bible Versions
- ESV (English Standard Version)
- NIV (New International Version)
- KJV (King James Version)
- NASB (New American Standard Bible)
- NKJV (New King James Version)
- NLT (New Living Translation)
- AMP (Amplified Bible)
- MSG (The Message)
Installation
Prerequisites
- Python 3.10+
uvpackage manager
Installing uv
On Linux/macOS:
curl -LsSf https://astral.sh/uv/install.sh | sh
On Windows:
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
Alternatively, you can install uv using pip:
pip install uv
After installation, restart your terminal or run source ~/.bashrc (Linux/macOS) or restart your command prompt (Windows).
Step 1: Install Dependencies
# From this directory
cd mcp-bible
# Install dependencies
uv sync
Step 2: Configure Environment
# Copy example configuration
cp .env.example .env
# Edit .env with your settings
vi .env
Usage
Run in MCP-only Mode (stdio)
# Set transport to stdio in .env
export MCP_TRANSPORT=stdio
export MCP_ONLY=true
# Run the server
uv run python -m mcp_bible.server
Run in HTTP Mode with REST API
# Set transport to HTTP in .env
export MCP_TRANSPORT=http
export MCP_ONLY=false
export MCP_PORT=3000
# Run the server
uv run python -m mcp_bible.server
The server will start at http://localhost:3000 with:
- MCP endpoint:
http://localhost:3000/mcp - REST API:
http://localhost:3000/* - API docs:
http://localhost:3000/docs - Health check:
http://localhost:3000/health
Test the MCP Tools
You can test the MCP tools by connecting GitHub Copilot or using a test client:
// .vscode/mcp.json
{
"servers": {
"bible": {
"type": "http",
"url": "http://localhost:3000/mcp"
}
}
}
Then ask Copilot:
- "Show me John 3:16"
- "What does Romans 8 say?"
- "Read Psalm 23 in NIV"
Test the REST API
# Health check
curl http://localhost:3000/health
# Get service info
curl http://localhost:3000/info
# Get a Bible passage
curl -X POST "http://localhost:3000/passage" \
-H "Content-Type: application/json" \
-d '{
"passage": "John 3:16",
"version": "ESV"
}'
Project Structure
mcp_bible/
├── __init__.py # Package metadata
├── config.py # Configuration management
├── bible_service.py # Business logic (Bible API client)
├── service.py # MCP service wrapper (with feature discovery)
├── server.py # Server implementation
├── features/ # Feature modules (MODULAR PATTERN)
│ ├── __init__.py
│ ├── get_passage/ # Get passage feature
│ │ ├── __init__.py
│ │ ├── models.py # Feature-specific models
│ │ ├── tool.py # MCP tool definition
│ │ └── routes.py # REST API endpoints
└── shared/ # Shared models and utilities
├── __init__.py
└── models.py # Base models, error types
How It Works
Features Pattern (Automatic Discovery)
This server uses automatic feature discovery - just like mcp-weather!
Add a new feature in 3 steps:
- Create feature directory:
features/my_feature/ - Add tool.py: With
register_tool(mcp, service)function - Add routes.py (optional): With
create_router(service)function
That's it! The service automatically:
- Discovers your feature
- Registers MCP tools from
tool.py - Includes REST routes from
routes.py
No manual registration needed!
1. Configuration Layer (config.py)
Extends core configuration classes with service-specific settings:
from core.config import BaseServerConfig
class BibleAPIConfig(BaseModel):
base_url: str
supported_versions: List[str]
class AppConfig(BaseModel):
server: ServerConfig
bible_api: BibleAPIConfig
2. Business Logic Layer (bible_service.py)
Pure business logic, independent of MCP/REST:
class BibleService:
async def fetch_passage(self, passage: str, version: str) -> dict:
# Bible passage retrieval logic here
...
3. MCP Service Wrapper (service.py)
Implements BaseService to expose business logic via MCP:
from core.server import BaseService
class BibleMCPService(BaseService):
def register_mcp_tools(self, mcp: FastMCP) -> None:
# Automatic feature discovery and registration
4. Server Implementation (server.py)
Extends BaseMCPServer to create the complete server:
from core.server import BaseMCPServer
class BibleMCPServer(BaseMCPServer):
@property
def service_title(self) -> str:
return "Bible MCP Server"
def create_router(self) -> APIRouter:
# Add REST endpoints
...
Key Benefits of Using mcp-weather Core
By using mcp-weather as a dependency, you get:
✅ No boilerplate - Server infrastructure is ready to use ✅ Dual interfaces - MCP + REST API automatically ✅ Configuration - Environment variable management ✅ Error handling - Comprehensive exception handling ✅ Type safety - Full Pydantic models and type hints ✅ Async support - Async-first design throughout ✅ Logging - Structured logging built-in ✅ CORS - Configurable CORS support ✅ Health checks - Standard endpoints
Customization
Add New MCP Tools
Edit mcp_bible/service.py:
def register_mcp_tools(self, mcp: FastMCP) -> None:
@mcp.tool()
async def my_new_tool(param: str) -> dict:
"""Tool description for AI"""
return {"result": "value"}
Add New REST Endpoints
Edit mcp_bible/server.py:
def create_router(self) -> APIRouter:
router = APIRouter()
@router.get("/my-endpoint")
async def my_endpoint():
return {"data": "value"}
return router
Add New Configuration
Edit mcp_bible/config.py:
class BibleAPIConfig(BaseModel):
my_new_field: str = Field(default="value")
Troubleshooting
Import Errors
Make sure you're importing from core, not mcp_weather.core:
from core.server import BaseMCPServer # ✅ Correct
from mcp_weather.core.server import BaseMCPServer # ❌ Wrong
Module Not Found
Make sure mcp-weather is installed:
uv pip list | grep mcp-weather
If not installed, install it:
uv sync # Installs from pyproject.toml
Next Steps
- Add real Bible API integration
- Add more Bible versions
- Implement passage search
- Add daily verses
- Implement caching
- Add metrics and monitoring
Learn More
License
This project is provided as-is for use and modification.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.