Bi-Temporal Knowledge Graph MCP Server
Gives AI agents persistent memory with bi-temporal tracking, automatically extracting entities from natural language and enabling time-travel queries to understand facts as they existed at any point in history.
README
Bi-Temporal Knowledge Graph MCP Server
A production-ready MCP (Model Context Protocol) server that gives your AI agents persistent memory with full temporal tracking. Save facts, extract entities using AI, and query historical data with time-travel capabilities.
Build intelligent AI agents with persistent memory that understands time and context
Architecture
This server uses a single-file "Database-Blind" architecture:
- main.py - Everything in one file: FalkorDB driver, session management, entity extraction, memory tools, and your custom automation tools
Structure:
- Configuration & Database Driver
- Session Store & Entity Extractor
- Graphiti Memory Core
- Core MCP Memory Tools
- CUSTOM AUTOMATION TOOLS section (add your webhook tools here!)
- Server Startup
Note: This server focuses solely on memory operations. For advanced workflow orchestration, see the optional Automation Engine OS section.
โญ Star This Repo
If you find this project useful, please give it a star! It helps others discover the project and motivates continued development.

๐ Links
- ๐ Get Started - Ready in 5 minutes
- ๐ฅ Video Tutorial - Watch how to set it up
- โ FAQs - Common questions answered
- ๐ Report Bugs - Found an issue?
- ๐ Request Features - Have an idea?
Resources
- ๐ฌ Community - High Ticket AI Builders community
- ๐ Full Documentation - Complete guide
- ๐ Deployment Guide - Deploy anywhere
- ๐งช Examples - Interactive scenarios
๐ Table of Contents
- Features
- How It Works
- Screenshots
- Video Tutorial
- Quick Start
- Adding Custom Tools
- API Reference - Memory Tools
- Use Cases
- FAQ
- Changelog
- Support
- Optional: Automation Engine OS
- License
โจ Features
๐ง Bi-Temporal Knowledge Graph
- Smart Memory: Automatically tracks when facts were created AND when they became true in reality
- Conflict Resolution: When you move locations or change jobs, old facts are automatically invalidated
- Time Travel Queries: Ask "Where did John live in March 2024?" and get accurate historical answers
- Session Tracking: Maintains context across conversations with automatic cleanup
๐ค AI-Powered Entity Extraction
- Natural Language Understanding: Just tell it in plain English - "Alice moved to San Francisco and started working at Google"
- Automatic Relationship Discovery: AI extracts entities and relationships without manual input
- OpenAI Integration: Uses GPT-4 for intelligent entity extraction
- Graceful Degradation: Works without AI - just add facts manually
๐ ๏ธ Simple Tool Extension
- Single-File Architecture: Everything in one
main.pyfile for easy customization - Direct @mcp.tool() Pattern: Add tools with a simple decorator - no config files needed
- Single & Multi-Webhook: Execute one webhook or fire multiple in parallel
- Clear Custom Section: Marked section in main.py shows exactly where to add your tools
๐ Production Ready
- Docker Support: Complete docker-compose setup included
- Replit Optimized: Built specifically for Replit Autoscale environments
- Resource Management: Automatic session cleanup and connection pooling
- Health Checks: Built-in monitoring and status endpoints
- 100% Privacy-Friendly: Your data stays in your database
๐ฌ How It Works
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ 1. Natural Language Input โ
โ "Bob moved to NYC and joined Google as a PM" โ
โโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ 2. AI Entity Extraction (OpenAI) โ
โ โข Bob -> lives in -> NYC โ
โ โข Bob -> works at -> Google โ
โ โข Bob -> has role -> PM โ
โโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ 3. Bi-Temporal Storage (FalkorDB) โ
โ โข Fact: Bob works at Google โ
โ โข created_at: 2024-12-19T10:00:00Z โ
โ โข valid_at: 2024-12-19T10:00:00Z โ
โ โข invalid_at: null (still true) โ
โโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ 4. Query Anytime โ
โ โข "Where does Bob work now?" โ Google โ
โ โข "What was Bob's job history?" โ All past jobs โ
โ โข "Where did Bob live in 2023?" โ Historical data โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ธ Screenshots
Memory in Action

AI Entity Extraction

Dynamic Tool Generation

Temporal Queries

๐ฅ Video Tutorial
Watch the complete setup and usage guide:
Topics covered:
- Installation & setup (0:00)
- Adding your first facts (2:30)
- Using AI entity extraction (5:15)
- Creating automation tools (8:45)
- Temporal queries (12:20)
- Deployment to production (15:00)
๐ Quick Start
Option 1: Docker Compose (Recommended)
# 1. Download and extract
wget https://github.com/YOUR_USERNAME/bitemporal-mcp-server/archive/main.zip
unzip main.zip
cd bitemporal-mcp-server-main
# 2. Configure
echo "OPENAI_API_KEY=sk-your-key" > .env
# 3. Start everything (FalkorDB + MCP Server)
docker-compose up -d
# 4. Verify it's running
curl http://localhost:8080/health
That's it! ๐ Your server is now running at http://localhost:8080/sse
Option 2: Python (Local Development)
# 1. Install dependencies
pip install -r requirements.txt
# 2. Configure
cp .env.example .env
# Edit .env with your settings
# 3. Start FalkorDB (Docker)
docker run -d -p 6379:6379 falkordb/falkordb:latest
# 4. Run the server
python main.py
Option 3: One-Click Deploy
๐ ๏ธ Adding Custom Automation Tools
Add your custom automation tools directly in main.py in the CUSTOM AUTOMATION TOOLS section.
Step 1: Find the Custom Tools Section
Open main.py and scroll to around line 800 - look for this clearly marked section:
# =============================================================================
#
# โโโโโโโ โโโ โโโ โโโโโโโโ โโโโโโโโโ โโโโโโโ โโโโ โโโโ
# โโโโโโโโ โโโ โโโ โโโโโโโโ โโโโโโโโโ โโโโโโโโโ โโโโโ โโโโโ
# โโโ โโโ โโโ โโโโโโโโ โโโ โโโ โโโ โโโโโโโโโโโ
# โโโ โโโ โโโ โโโโโโโโ โโโ โโโ โโโ โโโโโโโโโโโ
# โโโโโโโโ โโโโโโโโโ โโโโโโโโ โโโ โโโโโโโโโ โโโ โโโ โโโ
# โโโโโโโ โโโโโโโ โโโโโโโโ โโโ โโโโโโโ โโโ โโโ
#
# AUTOMATION TOOLS
#
# ADD YOUR CUSTOM AUTOMATION TOOLS BELOW
#
# =============================================================================
This is where you'll add your webhook tools using the @mcp.tool() decorator.
Step 2: Add Your Tool
Add a decorated async function with @mcp.tool():
@mcp.tool()
async def send_slack_notification(message: str, channel: str = "#general") -> str:
"""Send a notification to Slack."""
import httpx
payload = {"text": message, "channel": channel}
url = "https://hooks.slack.com/services/YOUR/WEBHOOK/URL"
async with httpx.AsyncClient() as client:
try:
resp = await client.post(url, json=payload)
return f"Success: Slack notification sent ({resp.status_code})"
except Exception as e:
return f"Error: {str(e)}"
The function's docstring becomes the tool description that the AI sees.
Step 3: Restart the Server
Restart the MCP server to load your new tools.
Example: LinkedIn Poster Tools
The Automation Engine App generates tools like this:
@mcp.tool()
async def linkedin_post_image(caption: str, imageurl: str) -> str:
"""Posts an image with a caption to your LinkedIn page."""
import httpx
payload = {"caption": caption, "imageUrl": imageurl}
url = "https://webhook.latenode.com/YOUR/WEBHOOK/URL"
async with httpx.AsyncClient() as client:
try:
resp = await client.post(url, json=payload)
return f"Success: LinkedIn image posted ({resp.status_code})"
except Exception as e:
return f"Error: {str(e)}"
Example: Multi-Webhook Broadcast
Fire multiple webhooks in parallel:
@mcp.tool()
async def broadcast_alert(message: str) -> str:
"""Send alerts to multiple platforms in parallel."""
import httpx
import asyncio
webhooks = [
("https://hooks.slack.com/...", {"text": message}),
("https://discord.com/api/webhooks/...", {"content": message}),
]
async def send(url, data):
async with httpx.AsyncClient() as client:
return await client.post(url, json=data)
results = await asyncio.gather(*[send(url, data) for url, data in webhooks])
return f"Broadcast complete: {len(results)} webhooks fired"
๐ API Reference - Memory Tools
All available MCP tools for managing your knowledge graph:
Core Memory Operations
add_fact
Add a new fact to the knowledge graph with bi-temporal tracking.
await add_fact(
source_entity="John",
relation="works at",
target_entity="Google",
group_id="my_org", # Optional
session_id="session_123", # Optional
valid_at="2024-01-15T00:00:00Z" # Optional - when fact became true
)
Smart Conflict Resolution: When adding location or employment facts, previous facts of the same type are automatically invalidated.
add_message
Add a natural language message and automatically extract entities using AI.
await add_message(
content="Alice moved to San Francisco and started working at OpenAI",
session_id="session_123",
group_id="my_org", # Optional
extract_entities=True # Uses OpenAI for extraction
)
Returns: Extracted entities and relationships as facts.
query_facts
Query facts from the knowledge graph.
await query_facts(
entity_name="John", # Optional - filter by entity
group_id="my_org", # Optional
include_invalid=False, # Include invalidated facts
max_facts=20
)
query_at_time
Time-travel query - get facts valid at a specific point in time.
await query_at_time(
timestamp="2024-01-15T00:00:00Z",
entity_name="John", # Optional
group_id="my_org", # Optional
max_facts=20
)
Use Case: "Where did John work in January 2024?"
get_episodes
Get recent conversation sessions/episodes.
await get_episodes(
group_ids=["my_org"], # Optional
max_episodes=10
)
clear_graph
Clear all data for specified groups. Warning: Permanent deletion!
await clear_graph(
group_ids=["my_org"] # Optional - defaults to DEFAULT_GROUP_ID
)
Server Management
get_status
Get comprehensive server status and statistics.
await get_status()
# Returns: node counts, relationship types, session stats, connection status
force_cleanup
Manually trigger cleanup of expired sessions and idle connections.
await force_cleanup()
# Returns: cleanup statistics
๐ก Use Cases
Personal Knowledge Management
Track your life events, relationships, and locations with full history:
await add_message(
"I met Sarah at the tech conference. She works at OpenAI.",
session_id="my_life"
)
# Later: "Where did I meet Sarah?" โ "At the tech conference"
Customer Relationship Management
Monitor customer interactions with automatic conflict resolution:
await add_fact("CustomerA", "status", "premium")
# Automatically invalidates previous "status" facts
# Query history: "What was CustomerA's status in January?"
AI Agent Memory
Give your AI agents persistent, queryable memory:
# Agent learns from conversation
await add_message(
"User prefers morning meetings and uses Slack",
session_id="agent_123"
)
# Agent recalls later: "What are the user's preferences?"
Workflow Automation
Combine knowledge with actions:
# When fact changes, trigger automation
if customer_upgraded_to_premium:
await notify_sales_team(customer_name=name)
await update_crm(customer_id=id, tier="premium")
โ Frequently Asked Questions
Q: Does this require OpenAI?
A: No! OpenAI is optional for AI entity extraction. You can add facts manually without it.
Q: Can I use this with Claude Desktop?
A: Yes! Add the server URL to your claude_desktop_config.json:
{
"mcpServers": {
"knowledge-graph": {
"url": "http://localhost:8080/sse"
}
}
}
Q: How do I query historical data?
A: Use the query_at_time tool:
await query_at_time(
timestamp="2024-01-15T00:00:00Z",
entity_name="John"
)
Q: Can I deploy this to production?
A: Absolutely! See DEPLOYMENT.md for guides on:
- Replit Autoscale
- Railway
- Render
- Fly.io
- Docker
- VPS
Q: How does fact invalidation work?
A: When you add a fact about location or employment, the system automatically finds previous facts of the same type and marks them as invalid_at: current_time. Your query results only show current facts unless you specifically request historical data.
Q: Can I create multi-webhook tools?
A: Yes! Add a tool to the Custom Tools section in main.py using asyncio.gather() to fire multiple webhooks simultaneously. See the Adding Custom Tools section for examples.
Q: Is my data secure?
A: Yes! Everything runs in your infrastructure. No data is sent anywhere except:
- OpenAI (only if you use entity extraction)
- Your configured webhooks (only when you call them)
Q: How much does it cost to run?
A: Free for self-hosting! Only costs:
- FalkorDB hosting (free tier available)
- OpenAI API usage (optional, ~$0.001 per extraction)
๐ Changelog
[1.0.0] - 2024-12-19
Added
- โ Full bi-temporal tracking (created_at, valid_at, invalid_at, expired_at)
- โ Smart conflict resolution for location and employment changes
- โ Session-aware episodic memory with 30-minute TTL
- โ OpenAI-powered entity extraction from natural language
- โ Dynamic tool generator for automation workflows
- โ Single webhook tool template
- โ Multi-webhook parallel execution template
- โ Docker and Docker Compose support
- โ Replit Autoscale optimization
- โ Background cleanup manager
- โ Comprehensive documentation and examples
Supported Features
| Feature | Status | Notes |
|---|---|---|
| Bi-Temporal Tracking | โ | Full implementation |
| AI Entity Extraction | โ | OpenAI GPT-4 |
| Smart Invalidation | โ | Location, employment, relationships |
| Session Management | โ | Auto-cleanup after 30 min |
| Custom Tools | โ | Single & multi-webhook via @mcp.tool() |
| Parallel Webhooks | โ | asyncio.gather |
| Docker Support | โ | Complete stack included |
| Health Checks | โ | Built-in monitoring |
๐ Support
Need Help?
- Check Documentation: Start with QUICKSTART.md
- Join Community: High Ticket AI Builders - Free access!
- Watch Tutorial: Video Guide
- Report Bugs: GitHub Issues
๐ง Optional: Automation Engine OS
Need a visual tool to orchestrate your workflows?
If you want to manage webhook configurations, generate tools automatically, and orchestrate complex workflows without writing code, check out Automation Engine OS - it's free when you join our community!
What Automation Engine OS provides:
- Visual webhook configuration builder
- Automatic MCP tool code generation
- Workflow orchestration dashboard
- Multi-webhook template management
- One-click tool deployment to your MCP server
Get free access: Join High Ticket AI Builders
Note: Automation Engine OS is completely optional. This MCP server works standalone - you can manually add tools to the Custom Tools section in main.py as shown in the Adding Custom Automation Tools section.
๐ค Contributing
Contributions are welcome! Areas for improvement:
- ๐ Additional temporal query operators
- ๐ง Enhanced entity extraction prompts
- ๐ง More webhook authentication methods
- ๐ Performance optimizations
- ๐ Additional deployment platforms
- ๐ More examples and tutorials
To contribute:
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
๐ License
This project is licensed under the MIT License - see the LICENSE file for details.
TL;DR: You can use this commercially, modify it, distribute it. Just keep the license notice.
๐ Acknowledgments
- Built with FastMCP
- Powered by FalkorDB
- AI features via OpenAI
- Inspired by the High Ticket AI Builders community
โญ Star History
๐ Connect
- ๐ฌ Community: High Ticket AI Builders
- ๐ Want this implemented for your business? Book a Meeting
<div align="center">
Built with โค๏ธ for the High Ticket AI Builders ecosystem
If this project helps you, please consider giving it a โญ!
</div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.