
Bernerspace
A unified MCP server that provides OAuth-enabled integrations for multiple services through a single deployment. Currently supports Slack with 47 tools, with plans to expand to Gmail, Google Calendar, Notion, and 100+ other integrations.
README
Bernerspace
One MCP server · All your integrations · Zero hassle
<p align="center"> <img src="assets/banner.jpg" alt="Bernerspace Banner" width="800"> </p>
<p align="center"> 🚀 <b>Unified MCP server for all OAuth-enabled integrations</b><br> <i>One server · One JWT · Many tools</i> </p>
<p align="center"> ✅ <b>Current Live Integration:</b> Slack — <b>47 tools</b> tested & available <br> 🔜 <b>Coming Soon:</b> Gmail · Google Calendar · Notion <br> 🎯 <b>Goal:</b> 100+ integrations </p>
Why
Using or integrating MCP servers today is painful because:
- Most MCP servers lack OAuth capabilities, limiting user experience.
- Every MCP server requires separate deployment and management, increasing operational overhead.
- Integration chaos: different authentication layers across MCP servers make unified integration nearly impossible.
What You Get
- Single JWT across services via middleware (HS256, issuer/audience validated).
- OAuth middleware per integration (Slack live; more coming) with DB‑backed token storage.
- Consistent MCP tools interface for each service.
- Unified endpoints you can self‑host, e.g.:
Current Status
- Current live integration: Slack with 47 fully tested tools available.
→ Learn more about Slack tools: docs/slack/tools.md - Coming soon: Gmail, Google Calendar, and Notion.
📖 Documentation
All setup instructions, integration guides, and examples are available on our Notion docs:
🔗 Bernerspace Quick Start Docs
The docs are updated regularly with:
- Quick start guides for new integrations
- Step-by-step installation instructions
- Usage examples for each tool
- Roadmap and contribution guidelines
Quickstart
- Environment
Create a .env
with the following variables:
JWT_SECRET=your-jwt-signing-secret
DATABASE_URL=postgresql://localhost:5432/mcp_server
CLIENT_ID=<slack_client_id>
CLIENT_SECRET=<slack_client_secret>
SLACK_REDIRECT_URI=http://localhost:8000/mcp/slack/oauth/callback
- Install dependencies (choose one)
- Using pip
- python3 -m venv .venv && source .venv/bin/activate
- pip install -e .
- Using uv
- uv venv && source .venv/bin/activate
- uv pip install -e .
- Run the server
- Using Python
- python server.py
- Server will listen on http://localhost:8000
- Using Docker
- docker build -t bernerspace-mcp .
- docker run --env-file .env -p 8000:8000 bernerspace-mcp
- Server will listen on http://localhost:8000
- Using Docker Compose
- docker compose up -d
- Create a JWT to call the MCP server
- python generate_jwt.py --user-id <your_user_id>
- Use the printed token as: Authorization: Bearer TOKEN
OAuth Flow (Slack)
- GET /mcp/slack returns
oauth_url
and instructions to authorize the workspace. - Slack redirects to
SLACK_REDIRECT_URI
(defaults to/mcp/slack/oauth/callback
). - The server exchanges the code, enriches the token details, and persists it in Postgres.
- Tokens are stored in table
oauth_tokens
with composite key(client_id, integration_type)
whereclient_id
= your JWT subject (sub
).
Database
- Schema managed with Alembic (migrations included).
- Table:
oauth_tokens(client_id, integration_type, token_json, stored_at)
. - Configure Postgres via
DATABASE_URL
.
MCP Client Configuration
Example client entry (mcp.json):
{
"servers": {
"slack": {
"url": "http://localhost:8000/mcp/slack",
"type": "http",
"headers": {
"Authorization": "Bearer YOUR_JWT"
}
}
}
}
If the user hasn’t completed OAuth, tool calls will return an object with requires_auth: true
and an oauth_url
you can open to complete authorization.
VS Code MCP Client Setup
Use this mcp.json
in your VS Code user settings (replace JWT
with your generated token):
{
"servers": {
"slack": {
"url": "http://localhost:8000/mcp/slack",
"type": "http",
"headers": {
"Authorization": "Bearer JWT"
}
}
},
"inputs": []
}
LangChain Example
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
client = MultiServerMCPClient(
{
"slack": {
"transport": "streamable_http",
"url": "http://localhost:8000/mcp/slack",
"headers": {
"Authorization": "Bearer YOUR_TOKEN"
},
}
}
)
tools = await client.get_tools()
agent = create_react_agent("openai:gpt-4.1", tools)
response = await agent.ainvoke({"messages": "Can you send hello message to my #general groups?"})
Docker
You can run Bernerspace MCP in Docker:
docker build -t bernerspace-mcp .
docker run --env-file .env -p 8000:8000 bernerspace-mcp
🚀 Roadmap
We’re just getting started. Our goal is to support 100+ integrations so you can connect any third-party service to your MCP server with ease.
Coming Soon
- 📧 Gmail
- 📅 Google Calendar
- 📂 Google Drive
- 🗂️ Notion
- 💻 GitHub
- 💬 Discord
- 📊 Airtable
- 🔍 ElasticSearch
- 📝 Confluence
…and dozens more on the way.
🤝 Contributing
We welcome contributions of all kinds — whether it’s fixing a bug, suggesting a feature, improving documentation, or just sharing feedback.
Ways to Contribute
- ⭐ Star the repo to show your support and help others discover Bernerspace.
- 🐛 Report a bug so we can fix it quickly.
- 💡 Request a feature or suggest an improvement.
- 🛠️ Submit a Pull Request with code changes, docs updates, or tests.
Stay in Touch
- 📧 Email me at ranga.sumit1999@gmail.com
- 🐦 Follow & DM on Twitter (X): @SumitSandbox
Whether you’re a first-time contributor or an experienced developer, we’d love to hear from you and collaborate!
License
This project is licensed under the MIT License.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.