
Bayesian MCP
A Model Calling Protocol server that enables LLMs to perform rigorous Bayesian analysis and probabilistic reasoning, including inference, model comparison, and predictive modeling with uncertainty quantification.
README
Bayesian MCP
A Model Calling Protocol (MCP) server for Bayesian reasoning, inference, and belief updating. This tool enables LLMs to perform rigorous Bayesian analysis and probabilistic reasoning.
Features
- 🧠 Bayesian Inference: Update beliefs with new evidence using MCMC sampling
- 📊 Model Comparison: Compare competing models using information criteria
- 🔮 Predictive Inference: Generate predictions with uncertainty quantification
- 📈 Visualization: Create visualizations of posterior distributions
- 🔌 MCP Integration: Seamlessly integrate with any LLM that supports MCP
Installation
Development Installation
Clone the repository and install dependencies:
git clone https://github.com/wrenchchatrepo/bayesian-mcp.git
cd bayesian-mcp
pip install -e .
Requirements
- Python 3.9+
- PyMC 5.0+
- ArviZ
- NumPy
- Matplotlib
- FastAPI
- Uvicorn
Quick Start
Starting the Server
# Run with default settings
python bayesian_mcp.py
# Specify host and port
python bayesian_mcp.py --host 0.0.0.0 --port 8080
# Set log level
python bayesian_mcp.py --log-level debug
The server will start and listen for MCP requests on the specified host and port.
API Usage
The Bayesian MCP server exposes several functions through its API:
1. Create Model
Create a new Bayesian model with specified variables.
# MCP Request
{
"function_name": "create_model",
"parameters": {
"model_name": "my_model",
"variables": {
"theta": {
"distribution": "normal",
"params": {"mu": 0, "sigma": 1}
},
"likelihood": {
"distribution": "normal",
"params": {"mu": "theta", "sigma": 0.5},
"observed": [0.1, 0.2, 0.3, 0.4]
}
}
}
}
2. Update Beliefs
Update model beliefs with new evidence.
# MCP Request
{
"function_name": "update_beliefs",
"parameters": {
"model_name": "my_model",
"evidence": {
"data": [0.1, 0.2, 0.3, 0.4]
},
"sample_kwargs": {
"draws": 1000,
"tune": 1000,
"chains": 2
}
}
}
3. Make Predictions
Generate predictions using the posterior distribution.
# MCP Request
{
"function_name": "predict",
"parameters": {
"model_name": "my_model",
"variables": ["theta"],
"conditions": {
"x": [1.0, 2.0, 3.0]
}
}
}
4. Compare Models
Compare multiple models using information criteria.
# MCP Request
{
"function_name": "compare_models",
"parameters": {
"model_names": ["model_1", "model_2"],
"metric": "waic"
}
}
5. Create Visualization
Generate visualizations of model posterior distributions.
# MCP Request
{
"function_name": "create_visualization",
"parameters": {
"model_name": "my_model",
"plot_type": "trace",
"variables": ["theta"]
}
}
Examples
The examples/
directory contains several examples demonstrating how to use the Bayesian MCP server:
Linear Regression
A simple linear regression example to demonstrate parameter estimation:
python examples/linear_regression.py
A/B Testing
An example of Bayesian A/B testing for conversion rates:
python examples/ab_test.py
Supported Distributions
The Bayesian engine supports the following distributions:
normal
: Normal (Gaussian) distributionlognormal
: Log-normal distributionbeta
: Beta distributiongamma
: Gamma distributionexponential
: Exponential distributionuniform
: Uniform distributionbernoulli
: Bernoulli distributionbinomial
: Binomial distributionpoisson
: Poisson distributiondeterministic
: Deterministic transformation
MCP Integration
This server implements the Model Calling Protocol, making it compatible with a wide range of LLMs and frameworks. To use it with your LLM:
import requests
response = requests.post("http://localhost:8000/mcp", json={
"function_name": "create_model",
"parameters": {
"model_name": "example_model",
"variables": {...}
}
})
result = response.json()
License
MIT
Credits
Based on concepts and code from the Wrench AI framework.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.