
Base64 MCP Server
A simple and efficient MCP server that provides Base64 encoding and decoding functionality for both text and images with support for Data URL format.
Tools
base64_encode_text
将文本转换为Base64编码 Args: text: 要编码的文本 Returns: Base64编码结果
base64_decode_text
将Base64编码解码为文本 Args: encoded: Base64编码的字符串 Returns: 解码后的文本
base64_encode_image
将图片转换为Base64编码 Args: image_path: 图片文件路径 Returns: Base64编码结果
base64_decode_image
将Base64编码解码为图片 Args: encoded: Base64编码的字符串 output_path: 输出图片的路径 mime_type: 图片的MIME类型 (默认为image/png) Returns: 解码结果
README
Base64编码解码MCP服务器
一个简单高效的MCP服务器,专注于提供Base64编码和解码功能,支持文本和图片的Base64转换。
<a href="https://glama.ai/mcp/servers/@liuyazui/base64_server"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@liuyazui/base64_server/badge" alt="Base64 Server MCP server" /> </a>
功能特点
- 文本Base64编码和解码
- 图片Base64编码和解码
- 支持Data URL格式
- 简单易用的API
- 使用uv进行依赖管理
安装
使用uv安装
# 创建虚拟环境
uv venv
# 激活虚拟环境(Linux/macOS)
source .venv/bin/activate
# 激活虚拟环境(Windows)
.venv\Scripts\activate
# 安装包(开发模式)
uv pip install -e .
# 安装带开发依赖的包
uv pip install -e ".[dev]"
使用方法
使用MCP Inspector测试
# 使用MCP Inspector测试服务器
uv run mcp dev base64_server.py
与MCP client集成
-
添加服务器配置:
{ "mcpServers": { "base64-encoder": { "command": "uv", "args": [ "run", "--with", "mcp[cli]", "mcp", "run", "[path to base64_server.py]" ] } } }
API参考
工具(Tools)
- base64_encode_text(text: str) -> str:将文本转换为Base64编码
- base64_decode_text(encoded: str) -> str:将Base64编码解码为文本
- base64_encode_image(image_path: str) -> str:将图片转换为Base64编码
- base64_decode_image(encoded: str, output_path: str, mime_type: str = "image/png") -> str:将Base64编码解码为图片
资源(Resources)
- encode://base64/text/{text}:获取文本的Base64编码
- decode://base64/text/{encoded}:获取Base64编码的解码结果
- encode://base64/image/{image_path}:获取图片的Base64编码
- decode://base64/image/{encoded}:获取Base64编码的解码图片
提示模板(Prompts)
- base64_usage_guide(): 提供Base64服务的基本使用指南
- encode_text_prompt(text: str): 文本编码提示模板
- encode_image_prompt(image_path: str): 图片编码提示模板
- error_handling_prompt(error_message: str): 错误处理提示模板
使用示例:
# 获取使用指南提示
messages = await client.get_prompt("base64_usage_guide")
# 获取文本编码提示
messages = await client.get_prompt("encode_text_prompt", {"text": "Hello World"})
开发
许可证
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.