Bangalore BMTC Mobility Connectivity Platform
Provides real-time access to Bangalore's public transportation information including bus tracking, schedules, routes, and service updates to improve passenger experience.
README
Bengaluru BMTC MCP Server
An implementation of a Mall Connector Program (MCP) server for Bangalore Metropolitan Transport Corporation (BMTC) bus services.
Architecture

The BMTC MCP server follows a modular, layered architecture that separates concerns and promotes maintainability. The system is designed to handle real-time transit data from Bangalore Metropolitan Transport Corporation buses and provide it through a standardized API.
Core Components
- API Layer: RESTful endpoints for authentication, routes, stops, bus locations, and ETA information
- Service Layer: Business logic, data transformation, and ETA calculations
- Data Access Layer: MongoDB integration via Mongoose ODM
- Caching Layer: Redis-based caching for improved performance
- External Integration Layer: BMTC API integration
Read the full architecture documentation
Features
- Real-time bus location tracking
- Route information and scheduling
- Stop details and ETA (Estimated Time of Arrival)
- Support for over 2,200 bus routes and 8,400+ bus stops in Bengaluru
- Authentication and authorization
- Data caching and optimization
- GeoSpatial queries for nearby stops and buses
Prerequisites
- Node.js (v14 or later)
- npm or yarn
- MongoDB
- Redis (optional, for caching)
- Git
Installation and Setup
Method 1: Standard Installation
- Clone the repository
git clone https://github.com/ajeetraina/bengaluru-bmtc-mcp.git
cd bengaluru-bmtc-mcp
- Install dependencies
npm install
- Configure environment variables
cp .env.example .env
Edit the .env file with your configuration:
PORT=3000
NODE_ENV=development
MONGO_URI=mongodb://localhost:27017/bmtc-mcp
REDIS_URI=redis://localhost:6379
API_KEY=your_api_key_here
JWT_SECRET=your_jwt_secret_here
JWT_EXPIRES_IN=86400
BMTC_API_ENDPOINT=https://bmtc-api-endpoint.example
BMTC_API_KEY=your_bmtc_api_key_here
CACHE_DURATION=300
LOG_LEVEL=info
- Seed the database with mock data (optional)
node src/scripts/seed.js
- Start the server
npm start
For development with auto-restart:
npm run dev
Method 2: Using Docker Compose
- Clone the repository
git clone https://github.com/ajeetraina/bengaluru-bmtc-mcp.git
cd bengaluru-bmtc-mcp
- Configure environment variables (optional)
You can modify the environment variables directly in the docker-compose.yml file or create a .env file:
cp .env.example .env
- Build and start the containers
docker-compose up -d
This will start three containers:
bmtc-mcp-api: The Node.js API serverbmtc-mcp-mongo: MongoDB databasebmtc-mcp-redis: Redis cache server
- Seed the database with mock data (optional)
docker-compose exec api node src/scripts/seed.js
- View logs
docker-compose logs -f api
- Stop the containers
docker-compose down
To remove volumes as well:
docker-compose down -v
Using the API
Once the server is running, you can access the API at:
http://localhost:3000/api/v1
For API documentation, visit:
http://localhost:3000/api-docs
Example API Endpoints
# Authentication
POST /api/v1/auth/login
GET /api/v1/auth/me
# Routes
GET /api/v1/routes
GET /api/v1/routes/:routeId
GET /api/v1/routes/search?source=Kempegowda&destination=Electronic
# Stops
GET /api/v1/stops
GET /api/v1/stops/:stopId
GET /api/v1/stops/near?lat=12.9767&lng=77.5713&radius=500
GET /api/v1/stops/search?query=Lalbagh
# Bus Locations
GET /api/v1/bus-locations
GET /api/v1/bus-locations/:busId
GET /api/v1/bus-locations/near?lat=12.9767&lng=77.5713&radius=1000
# ETA
GET /api/v1/eta/:stopId
GET /api/v1/eta/:stopId/:routeId
API Keys
JWT Secret
The JWT secret is used for signing authentication tokens. Generate a secure random string:
node -e "console.log(require('crypto').randomBytes(32).toString('hex'))"
Add this to your .env file:
JWT_SECRET=your_generated_secret_here
BMTC API Key
For development, you can use mock data without an actual BMTC API key:
BMTC_API_ENDPOINT=https://bmtc-api-endpoint.example
BMTC_API_KEY=your_bmtc_api_key_here
For production, you would need to contact BMTC directly to request official API access.
Development
Testing
Run the tests:
npm test
Run tests with coverage:
npm run test:coverage
Linting
Check code style:
npm run lint
Fix code style issues:
npm run lint:fix
Project Structure
bengaluru-bmtc-mcp/
├── .env.example # Environment variables template
├── .eslintrc.json # ESLint configuration
├── .github/ # GitHub configuration
│ └── workflows/ # GitHub Actions workflows
├── .gitignore # Git ignore file
├── CONTRIBUTING.md # Contribution guidelines
├── Dockerfile # Docker configuration
├── LICENSE # MIT License
├── README.md # Project documentation
├── docker-compose.yml # Docker Compose configuration
├── docs/ # Documentation
│ ├── api.md # API documentation
│ └── setup.md # Setup guide
├── jest.config.js # Jest configuration
├── package.json # Project dependencies
└── src/ # Source code
├── config/ # Configuration files
├── controllers/ # Request handlers
├── index.js # Application entry point
├── middlewares/ # Express middlewares
├── models/ # MongoDB models
├── public/ # Static files
├── routes/ # API routes
├── scripts/ # Utility scripts
├── services/ # External service integrations
├── tests/ # Test files
└── utils/ # Utility functions
Contributing
Please read CONTRIBUTING.md for details on our code of conduct and the process for submitting pull requests.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgements
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.