Azure Omni-Tool MCP Server

Azure Omni-Tool MCP Server

Enables intelligent interaction with Azure resources through natural language by translating requests into safe, auditable Azure CLI commands with plan/review workflows and direct access to 8 Azure services including Storage, Cosmos DB, Key Vault, and more.

Category
Visit Server

README

Azure Omni-Tool MCP Server

A Model Context Protocol (MCP) server in TypeScript that acts as an intelligent bridge between natural language requests and Azure CLI execution.

Features

Plan/Execute Flow - Review commands before execution
Safety Guardrails - Shell injection detection, destructive command warnings
Audit Trail - Operator email tagging for traceability
Retry Logic - Exponential backoff for transient failures
Caching - LRU cache with configurable TTL
Tenant Scoping - Configure tenant/subscription via environment
Azure Service Adapters - Type-safe access to 8 Azure services


Architecture Overview

flowchart TB
    subgraph Client["🖥️ Client Layer"]
        LLM[LLM / AI Agent]
    end

    subgraph MCP["⚙️ MCP Server"]
        direction TB
        Entry[index.ts]
        
        subgraph Tools["Tools"]
            T1[manage_azure_resources]
            T2[get_azure_context]
            T3[azure_service]
        end
        
        subgraph Lib["Core Libraries"]
            Auth[auth.ts]
            Cache[cache.ts]
            CLI[cli-executor.ts]
            Retry[retry.ts]
            Safety[safety.ts]
            Audit[audit.ts]
        end
        
        subgraph Services["Service Adapters"]
            S1[StorageService]
            S2[CosmosService]
            S3[SearchService]
            S4[KustoService]
            S5[MonitorService]
            S6[AppConfigService]
            S7[KeyVaultService]
            S8[PostgresService]
        end
    end

    subgraph Azure["☁️ Azure"]
        AzCLI[Azure CLI]
        AzAPI[Azure APIs]
    end

    LLM -->|MCP Protocol| Entry
    Entry --> Tools
    Tools --> Lib
    Tools --> Services
    Services --> Lib
    Lib --> AzCLI
    Auth --> AzAPI

Request Flow

sequenceDiagram
    participant C as Client
    participant M as MCP Server
    participant S as Safety
    participant E as CLI Executor
    participant A as Azure

    C->>M: Tool Request
    M->>S: Validate Input
    alt Unsafe Command
        S-->>M: Block + Warning
        M-->>C: Error Response
    else Safe
        S-->>M: Approved
        M->>E: Execute Command
        E->>A: az CLI call
        A-->>E: Response
        E-->>M: Result + Parse
        M-->>C: Structured Output
    end

Plan/Execute Flow

flowchart LR
    A[LLM Client] -->|Natural Language| B[MCP Server]
    B --> C{execute_now?}
    C -->|false| D[Return Plan]
    C -->|true| E[Execute CLI]
    E --> F{Success?}
    F -->|Yes| G[Return Output]
    F -->|No| H[Return Error + Analysis]
    H -->|Feedback Loop| A

Quick Start

1. Install Dependencies

npm install

2. Configure Environment

cp .env.example .env
# Edit .env with your settings

3. Build & Run

npm run build
npm start

MCP Client Configuration

{
  "mcpServers": {
    "azure-omni-tool": {
      "command": "node",
      "args": ["path/to/Azure-mcp/dist/index.js"]
    }
  }
}

Tools

manage_azure_resources

Plan and execute Azure CLI commands with safety checks.

Argument Type Description
command string Azure CLI command
explanation string Why this command was chosen
execute_now boolean false = plan, true = execute

get_azure_context

Query Azure environment with caching.

Query Type Description
subscriptions List accessible subscriptions
resource_groups List resource groups
resources List resources
custom Custom KQL via Resource Graph

azure_service

Interact with specific Azure services.

Service Actions
storage list, listContainers, listBlobs, getContainer, listTables, queryTable
cosmos list, listDatabases, listContainers, query, getContainer
search list, listIndexes, getIndex, query, getService
kusto list, listDatabases, listTables, getSchema, sample, query
monitor list, getWorkspace, listTables, query, listMetrics, getMetrics
appconfig list, getStore, listKeyValues, getKeyValue, setKeyValue, lock, unlock
keyvault list, getVault, listKeys, getKey, createKey, listSecrets, getSecret, listCertificates
postgres list, getServer, listDatabases, listParameters, getParameter, listTables, getTableSchema, query

Environment Variables

Variable Description Default
AZURE_TENANT_ID Azure tenant for scoping -
AZURE_SUBSCRIPTION_ID Default subscription -
OPERATOR_EMAIL Email for audit trail -
OPERATOR_NAME Operator name -
LOG_LEVEL Logging level info
ENABLE_CACHE Enable query caching true
CACHE_TTL_SECONDS Cache duration 300
CACHE_CLEANUP_INTERVAL_MS Cache cleanup interval 60000
MAX_RETRIES Retry attempts 3
RETRY_DELAY_MS Base retry delay 1000
COMMAND_TIMEOUT_MS CLI timeout 120000
AZURE_MCP_INCLUDE_PRODUCTION_CREDENTIALS Enable Managed Identity false

Project Structure

Azure-mcp/
├── src/
│   ├── index.ts                 # MCP server entry
│   ├── lib/
│   │   ├── auth.ts              # Azure credential management
│   │   ├── audit.ts             # Audit trail with correlation IDs
│   │   ├── cache.ts             # LRU cache with TTL
│   │   ├── cli-executor.ts      # Azure CLI wrapper
│   │   ├── config.ts            # Environment config
│   │   ├── logger.ts            # Structured JSON logging
│   │   ├── retry.ts             # Exponential backoff
│   │   ├── safety.ts            # Input sanitization
│   │   └── types.ts             # Shared types
│   ├── services/
│   │   ├── base-service.ts      # Abstract service base
│   │   ├── storage.ts           # Azure Storage
│   │   ├── cosmos.ts            # Cosmos DB
│   │   ├── search.ts            # AI Search
│   │   ├── kusto.ts             # Data Explorer
│   │   ├── monitor.ts           # Monitor / Log Analytics
│   │   ├── appconfig.ts         # App Configuration
│   │   ├── keyvault.ts          # Key Vault
│   │   ├── postgres.ts          # PostgreSQL Flexible Server
│   │   └── index.ts             # Service factory
│   └── tools/
│       ├── azure-manager.ts     # Plan/Execute tool
│       ├── context-retriever.ts # Context queries
│       └── service-tool.ts      # Service adapter tool
├── .env.example
├── package.json
└── tsconfig.json

Prerequisites

  • Node.js >= 18.0.0
  • Azure CLI installed and authenticated (az login)

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured