Azure Omni-Tool MCP Server
Enables intelligent interaction with Azure resources through natural language by translating requests into safe, auditable Azure CLI commands with plan/review workflows and direct access to 8 Azure services including Storage, Cosmos DB, Key Vault, and more.
README
Azure Omni-Tool MCP Server
A Model Context Protocol (MCP) server in TypeScript that acts as an intelligent bridge between natural language requests and Azure CLI execution.
Features
✅ Plan/Execute Flow - Review commands before execution
✅ Safety Guardrails - Shell injection detection, destructive command warnings
✅ Audit Trail - Operator email tagging for traceability
✅ Retry Logic - Exponential backoff for transient failures
✅ Caching - LRU cache with configurable TTL
✅ Tenant Scoping - Configure tenant/subscription via environment
✅ Azure Service Adapters - Type-safe access to 8 Azure services
Architecture Overview
flowchart TB
subgraph Client["🖥️ Client Layer"]
LLM[LLM / AI Agent]
end
subgraph MCP["⚙️ MCP Server"]
direction TB
Entry[index.ts]
subgraph Tools["Tools"]
T1[manage_azure_resources]
T2[get_azure_context]
T3[azure_service]
end
subgraph Lib["Core Libraries"]
Auth[auth.ts]
Cache[cache.ts]
CLI[cli-executor.ts]
Retry[retry.ts]
Safety[safety.ts]
Audit[audit.ts]
end
subgraph Services["Service Adapters"]
S1[StorageService]
S2[CosmosService]
S3[SearchService]
S4[KustoService]
S5[MonitorService]
S6[AppConfigService]
S7[KeyVaultService]
S8[PostgresService]
end
end
subgraph Azure["☁️ Azure"]
AzCLI[Azure CLI]
AzAPI[Azure APIs]
end
LLM -->|MCP Protocol| Entry
Entry --> Tools
Tools --> Lib
Tools --> Services
Services --> Lib
Lib --> AzCLI
Auth --> AzAPI
Request Flow
sequenceDiagram
participant C as Client
participant M as MCP Server
participant S as Safety
participant E as CLI Executor
participant A as Azure
C->>M: Tool Request
M->>S: Validate Input
alt Unsafe Command
S-->>M: Block + Warning
M-->>C: Error Response
else Safe
S-->>M: Approved
M->>E: Execute Command
E->>A: az CLI call
A-->>E: Response
E-->>M: Result + Parse
M-->>C: Structured Output
end
Plan/Execute Flow
flowchart LR
A[LLM Client] -->|Natural Language| B[MCP Server]
B --> C{execute_now?}
C -->|false| D[Return Plan]
C -->|true| E[Execute CLI]
E --> F{Success?}
F -->|Yes| G[Return Output]
F -->|No| H[Return Error + Analysis]
H -->|Feedback Loop| A
Quick Start
1. Install Dependencies
npm install
2. Configure Environment
cp .env.example .env
# Edit .env with your settings
3. Build & Run
npm run build
npm start
MCP Client Configuration
{
"mcpServers": {
"azure-omni-tool": {
"command": "node",
"args": ["path/to/Azure-mcp/dist/index.js"]
}
}
}
Tools
manage_azure_resources
Plan and execute Azure CLI commands with safety checks.
| Argument | Type | Description |
|---|---|---|
command |
string | Azure CLI command |
explanation |
string | Why this command was chosen |
execute_now |
boolean | false = plan, true = execute |
get_azure_context
Query Azure environment with caching.
| Query Type | Description |
|---|---|
subscriptions |
List accessible subscriptions |
resource_groups |
List resource groups |
resources |
List resources |
custom |
Custom KQL via Resource Graph |
azure_service
Interact with specific Azure services.
| Service | Actions |
|---|---|
storage |
list, listContainers, listBlobs, getContainer, listTables, queryTable |
cosmos |
list, listDatabases, listContainers, query, getContainer |
search |
list, listIndexes, getIndex, query, getService |
kusto |
list, listDatabases, listTables, getSchema, sample, query |
monitor |
list, getWorkspace, listTables, query, listMetrics, getMetrics |
appconfig |
list, getStore, listKeyValues, getKeyValue, setKeyValue, lock, unlock |
keyvault |
list, getVault, listKeys, getKey, createKey, listSecrets, getSecret, listCertificates |
postgres |
list, getServer, listDatabases, listParameters, getParameter, listTables, getTableSchema, query |
Environment Variables
| Variable | Description | Default |
|---|---|---|
AZURE_TENANT_ID |
Azure tenant for scoping | - |
AZURE_SUBSCRIPTION_ID |
Default subscription | - |
OPERATOR_EMAIL |
Email for audit trail | - |
OPERATOR_NAME |
Operator name | - |
LOG_LEVEL |
Logging level | info |
ENABLE_CACHE |
Enable query caching | true |
CACHE_TTL_SECONDS |
Cache duration | 300 |
CACHE_CLEANUP_INTERVAL_MS |
Cache cleanup interval | 60000 |
MAX_RETRIES |
Retry attempts | 3 |
RETRY_DELAY_MS |
Base retry delay | 1000 |
COMMAND_TIMEOUT_MS |
CLI timeout | 120000 |
AZURE_MCP_INCLUDE_PRODUCTION_CREDENTIALS |
Enable Managed Identity | false |
Project Structure
Azure-mcp/
├── src/
│ ├── index.ts # MCP server entry
│ ├── lib/
│ │ ├── auth.ts # Azure credential management
│ │ ├── audit.ts # Audit trail with correlation IDs
│ │ ├── cache.ts # LRU cache with TTL
│ │ ├── cli-executor.ts # Azure CLI wrapper
│ │ ├── config.ts # Environment config
│ │ ├── logger.ts # Structured JSON logging
│ │ ├── retry.ts # Exponential backoff
│ │ ├── safety.ts # Input sanitization
│ │ └── types.ts # Shared types
│ ├── services/
│ │ ├── base-service.ts # Abstract service base
│ │ ├── storage.ts # Azure Storage
│ │ ├── cosmos.ts # Cosmos DB
│ │ ├── search.ts # AI Search
│ │ ├── kusto.ts # Data Explorer
│ │ ├── monitor.ts # Monitor / Log Analytics
│ │ ├── appconfig.ts # App Configuration
│ │ ├── keyvault.ts # Key Vault
│ │ ├── postgres.ts # PostgreSQL Flexible Server
│ │ └── index.ts # Service factory
│ └── tools/
│ ├── azure-manager.ts # Plan/Execute tool
│ ├── context-retriever.ts # Context queries
│ └── service-tool.ts # Service adapter tool
├── .env.example
├── package.json
└── tsconfig.json
Prerequisites
- Node.js >= 18.0.0
- Azure CLI installed and authenticated (
az login)
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
E2B
Using MCP to run code via e2b.