Azure AI Search MCP Server
Enables Claude to search and retrieve documents from Azure AI Search indexes with intelligent summarization and analysis using LangGraph workflows and optional Google Gemini integration.
README
Azure AI Search MCP Server ๐๐ค
<!-- SEO Keywords: Azure AI Search, MCP Server, Claude Desktop, LangGraph, RAG, Retrieval Augmented Generation, Document Search, AI Search Integration, Model Context Protocol, Enterprise Search -->
An intelligent Model Context Protocol (MCP) server for Azure AI Search integration with Claude Desktop - Transform enterprise document search into natural AI conversations using LangGraph workflows, Google Gemini, and advanced retrieval-augmented generation (RAG).
๐ฅ Keywords: Azure Cognitive Search, MCP Server, Claude Desktop Integration, LangGraph AI Workflows, Document Retrieval, Enterprise Search, RAG Implementation, AI-Powered Search, Conversational AI, Knowledge Management
๐ Perfect for: Enterprise search solutions, document analysis platforms, knowledge management systems, AI-powered research tools, intelligent document retrieval, conversational search interfaces, and RAG (Retrieval-Augmented Generation) applications.
Requirements: Python 3.8+ | Azure AI Search Service | Claude Desktop | Google Gemini API (optional)
Features
- ๐ Azure AI Search Integration: Connect to your Azure AI Search index
- ๐ LangGraph Chain: Intelligent query processing and context retrieval
- ๐ง Google Gemini Integration: Enhanced document formatting, summarization, and analysis
- ๐จ Enhanced Visualizations: Grandalf layouts, Mermaid diagrams, and ASCII art
- ๐ LangSmith Tracing: Full observability and debugging of chain executions
- ๐ MCP Protocol: Expose functionality as tools that Claude can use directly
- โ๏ธ Configurable: Easy setup with environment variables
- ๐ง Pydantic Validation: Type-safe configuration and data validation
- ๐ Environment Management: Secure credential handling with python-dotenv
- ๐ญ Persona-Driven Responses: Two distinct AI personas for different output styles
- ๐ JSON-Based Prompts: Easily editable prompt templates
- ๐งช Comprehensive Testing: Full test suite with multiple scenarios
Table of Contents
- Technical Stack
- Quick Setup
- Configuration
- Google Gemini Setup
- Claude Desktop Integration
- Project Structure
- Architecture Overview
- Available Tools
- Visualization Tools
- Testing
- Development
- LangSmith Monitoring
- Troubleshooting
Technical Stack
Core Technologies
- Python 3.8+: Modern Python with asyncio support
- LangChain/LangGraph: AI workflow orchestration and state management
- Azure AI Search: Cloud-based document indexing and retrieval
- Google Gemini: Large language model for content processing
- Model Context Protocol (MCP): Standard protocol for AI tool integration
Configuration & Validation
- Pydantic v2: Type-safe configuration models with automatic validation
- python-dotenv: Environment variable management and secrets handling
- Structured Logging: Comprehensive error tracking and debugging
Visualization & Development
- Grandalf: Advanced graph layout algorithms for LangGraph visualization
- Mermaid: Professional diagram generation for documentation
- LangSmith: Observability and tracing for AI chain executions
- Pytest: Comprehensive testing framework with async support
Quick Setup
-
Clone and Install:
git clone https://github.com/codewith-mm/langgraph-claude-azure-mcp.git cd langgraph-claude-azure-mcp pip install -e . -
Configure Environment: Copy
.env.exampleto.envand fill in your credentials:# On Windows (PowerShell): Copy-Item .env.example .env # On macOS/Linux: cp .env.example .env -
Run the MCP Server:
azure-search-mcp
Configuration
Create a .env file in the project root with the following variables:
# Azure AI Search
AZURE_SEARCH_ENDPOINT=https://your-search-service.search.windows.net
AZURE_SEARCH_API_KEY=your-search-admin-key
AZURE_SEARCH_INDEX_NAME=your-index-name
# Google Gemini (for enhanced AI processing)
GOOGLE_API_KEY=your-google-api-key
GEMINI_MODEL=gemini-1.5-flash
GEMINI_TEMPERATURE=0.1
# LangSmith (for tracing and debugging)
LANGCHAIN_TRACING_V2=true
LANGCHAIN_ENDPOINT=https://api.smith.langchain.com
LANGCHAIN_API_KEY=your-langsmith-api-key
LANGCHAIN_PROJECT=azure-search-mcp
Google Gemini Setup
- Get API Key: Visit Google AI Studio
- Create API Key: Generate a new API key for your project
- Add to Environment: Set
GOOGLE_API_KEYin your.envfile
The server will automatically:
- Use Google Gemini for document formatting and summarization when API key is configured
- Fall back to basic formatting if no API key is provided
- Create proper LangChain chains that appear in LangSmith tracing
Claude Desktop Integration
Step 1: Locate Claude Desktop Configuration
Claude Desktop stores its configuration in a JSON file. Example (Windows):
%APPDATA%/Claude/claude_desktop_config.json
Step 2: MCP Server Configuration
Add this configuration to your Claude Desktop config file (update paths as needed for your environment):
{
"mcpServers": {
"azure-search-mcp": {
"command": "python",
"args": [
"-m",
"azure_search_mcp"
],
"cwd": "../langgraph-claude-azure-mcp",
"env": {
"PYTHONPATH": "../langgraph-claude-azure-mcp/src"
}
}
}
}
Step 3: Testing the Integration
Ask Claude to:
-
Search for CEO compensation:
"Can you search for CEO compensation information using the Azure Search tool?" -
Analyze executive pay:
"Use the search tool to find and analyze executive compensation data" -
Get document summaries:
"Search for salary information and provide a summary"
Project Structure
langgraph-claude-azure-mcp/
โโโ README.md # This comprehensive guide
โโโ pyproject.toml # Python project configuration
โโโ pytest.ini # Pytest configuration
โโโ .env.example # Environment variables template
โโโ claude_mcp_config.json # Claude Desktop MCP configuration
โโโ visualize.py # Quick visualization launcher
โ
โโโ src/ # Source code
โ โโโ azure_search_mcp/ # Main package
โ โโโ __init__.py # Package initialization
โ โโโ __main__.py # CLI entry point
โ โโโ config.py # Configuration management
โ โโโ prompts.json # JSON-based prompt templates
โ โโโ prompt_manager.py # Prompt loading and management
โ โโโ azure_search.py # Azure AI Search client
โ โโโ chain.py # LangGraph chain implementation
โ โโโ server.py # MCP server implementation
โ
โโโ tests/ # Comprehensive test suite
โ โโโ test_chain.py # Chain functionality tests
โ โโโ test_integration.py # Integration tests
โ โโโ test_env_loading.py # Environment configuration tests
โ โโโ verify_claude_setup.py # Claude setup verification
โ โโโ run_tests.py # Test runner script
โ
โโโ visualization/ # Graph visualization tools
โ โโโ dynamic_graph_viz.py # Main visualization engine
โ โโโ visualize_launcher.py # Launcher script
โ
โโโ tools/ # Development and debug tools
โ โโโ debug_tools_timeout.py # Debugging utilities
โ โโโ test_prompts_list.py # Prompt testing tools
โ
โโโ docs/ # Specialized documentation
โโโ guides/ # Setup guides
โ โโโ CLAUDE_SETUP_GUIDE.md # Detailed Claude setup
โโโ development/ # Development documentation
โโโ [various dev docs] # Technical implementation details
Architecture Overview
Core Components
-
chain.py- LangGraph-based workflow engine- SearchState management
- Three output formats (structured, summary, analysis)
- Persona-driven prompt routing
-
prompt_manager.py- JSON-based prompt system- Dynamic template loading
- Two persona management (Financial Analyst and Search Quality Rater)
- Hot-reloadable configurations
-
server.py- MCP server implementation- Tool definitions and handlers
- Claude Desktop integration
- Error handling and logging
-
azure_search.py- Azure AI Search client- Document retrieval
- Vector and hybrid search
- Result formatting
-
config.py- Configuration management- Environment variable handling with python-dotenv
- Service configurations (Azure, Gemini, LangSmith)
- Pydantic-based validation and type safety
- Secure defaults and configuration validation
Key Features
- ๐ญ Persona-Driven Responses: Two distinct AI personas for different output styles
- ๐ LangGraph Workflow: State-based processing with intelligent routing
- ๐ JSON-Based Prompts: Easily editable prompt templates
- ๐ Azure AI Search: Advanced document retrieval capabilities
- ๐ง Gemini Integration: Google's LLM for content processing
- ๐ LangSmith Tracing: Comprehensive observability
- ๐ Claude Desktop: Native MCP integration
- ๐ง Pydantic Models: Type-safe configuration with automatic validation
- ๐ Secure Configuration: Environment-based secrets management with python-dotenv
Available Tools
search_documents: Search for relevant documents in Azure AI Search using text queriesget_document_context: Retrieve detailed context from specific documents by their IDssearch_and_summarize: Search and get a summarized view of resultssearch_with_analysis: Search with relevance analysis
Each tool supports different output formats:
- structured: Detailed formatting with clear sections
- summary: Concise overview with key points
- analysis: In-depth analysis with insights and recommendations
Visualization Tools
The system includes comprehensive graph visualization capabilities for inspecting LangGraph structures:
Quick Visualization
# Comprehensive visualization
python visualize.py full
# Demo all methods
python visualize.py demo
Built-in Method
from azure_search_mcp.chain import AzureSearchChain
chain = AzureSearchChain()
chain.print_graph_diagram() # Prints dynamic graph structure
Features
- ๐จ Mermaid Diagrams: Color-coded nodes with professional styling
- ๐ผ๏ธ ASCII Art: Terminal-friendly graph representations
- ๐ Advanced Layouts: Grandalf integration for enhanced positioning
- ๐ File Export: Export diagrams as
.mmdand.jsonfiles - ๐ 100% Dynamic: Automatically adapts to any graph structure changes
- ๐ท๏ธ Type Detection: Shows node types and state structure
Example Output
Mermaid Diagram
graph TD
validate_input["Validate Input"]
search_documents["Search Documents"]
prepare_context["Prepare Context"]
summarize_results["Summarize Results"]
analyze_results["Analyze Results"]
format_structured["Format Structured"]
handle_error["Handle Error"]
END((END))
validate_input -->|continue| search_documents
validate_input -->|error| handle_error
search_documents -->|continue| prepare_context
search_documents -->|error| handle_error
prepare_context -->|summary| summarize_results
prepare_context -->|analysis| analyze_results
prepare_context -->|structured| format_structured
summarize_results --> END
analyze_results --> END
format_structured --> END
handle_error --> END
style validate_input fill:#fff3e0,stroke:#ff9800,stroke-width:2px
style search_documents fill:#e3f2fd,stroke:#1976d2,stroke-width:2px
style prepare_context fill:#f3e5f5,stroke:#8e24aa,stroke-width:2px
style summarize_results fill:#e8f5e9,stroke:#388e3c,stroke-width:2px
style analyze_results fill:#fffde7,stroke:#fbc02d,stroke-width:2px
style format_structured fill:#fbe9e7,stroke:#d84315,stroke-width:2px
style handle_error fill:#ffebee,stroke:#c62828,stroke-width:2px
style END fill:#eeeeee,stroke:#616161,stroke-width:2px
ASCII Art
๐จ ASCII DIAGRAM:
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โก validate_input
โ โ
โ โโ(continue)โโโบ โก search_documents
โ โ โ
โ โ โโ(continue)โโโบ โก prepare_context
โ โ โ
โ โ โโ(summary)โโโบ โก summarize_results โโโบ โ END
โ โ โโ(analysis)โโบ โก analyze_results โโโโโโบ โ END
โ โ โโ(structured)โโบ โก format_structured โโบ โ END
โ โโ(error)โโโโโบ โก handle_error โโโโโโโโโโโโโโโโโโโโโบ โ END
โโ(error)โโโโโบ โก handle_error โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโบ โ END
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Testing
Essential Test Suite
The test suite has been streamlined to include only the most essential tests:
-
Core Chain Tests (
test_chain.py)- Chain functionality and state management
- Search tool functionality
- Routing logic and conditional edges
- Prompt template validation
-
Integration Tests (
test_integration.py)- End-to-end MCP server functionality
- Search functionality validation
- Server initialization and protocol compliance
-
Environment Configuration (
test_env_loading.py)- Environment variable loading
- Configuration validation
- API key verification
-
Claude Setup Verification (
verify_claude_setup.py)- MCP server command validation
- Claude Desktop integration check
Running Tests
# Run all essential tests
python tests/run_tests.py
# Run specific test categories
python -m pytest tests/test_chain.py -v
python -m pytest tests/test_integration.py -v
# Run environment check only
python tests/test_env_loading.py
Development
Setup Development Environment
-
Install development dependencies:
pip install -e ".[dev]" -
Run tests:
pytest -
Format code:
black src/ ruff check src/ ```
Adding Features
- Adding Tests: Place in
tests/directory withtest_*.pynaming - Modifying Prompts: Edit
src/azure_search_mcp/prompts.json - Configuration: Update
src/azure_search_mcp/config.py - New Tools: Add to
src/azure_search_mcp/server.py
Project Tasks
The following VS Code tasks are available:
- Start MCP Server: Launch the MCP server for testing
- Start MCP Server (Conda): Launch using conda environment
- Test MCP Server (Standalone): Run standalone tests
LangSmith Monitoring
Setup LangSmith (Recommended)
LangSmith provides excellent tracing and monitoring for your MCP server:
- Sign up for LangSmith: Visit smith.langchain.com
- Get your API key: Go to Settings โ API Keys โ Create API Key
- Update your
.envfile with your real LangSmith API key:LANGCHAIN_API_KEY=lsv2_pt_your_actual_api_key_here - Test the integration by running the MCP server and checking the LangSmith dashboard
Benefits of LangSmith Integration
- ๐ Trace Operations: All search operations and performance metrics
- ๐ Debug Issues: Search queries and results debugging
- ๐ Monitor Usage: Usage patterns and response times
- ๐จ Get Alerts: Error notifications and performance issues
- ๐ View Traces: Detailed execution traces for each Claude interaction
What Gets Traced
- โ Individual tool calls from Claude
- โ Azure AI Search query execution
- โ Document retrieval and formatting
- โ LangGraph workflow execution
- โ Performance metrics and timing
Troubleshooting
Common Issues
Claude doesn't see the tools
- Solution: Check the config file path and restart Claude Desktop completely
MCP server fails to start
- Solution: Test the server manually:
cd .\langgraph-claude-azure-mcp\src python -m azure_search_mcp
Authentication errors
- Solution: Verify your
.envfile has the correct Azure Search credentials
No search results
- Solution: Test your Azure Search index manually to ensure it has documents
Import or dependency errors
- Solution: Ensure all dependencies are installed:
pip install -e .
Configuration Files Summary
Claude Desktop Config Location:
.\AppData\Roaming\Claude\claude_desktop_config.json
MCP Server Location:
.\langgraph-claude-azure-mcp\src\azure_search_mcp\
Environment Variables:
.\langgraph-claude-azure-mcp\.env
LangSmith Integration:
- โ Tracing configured and ready
- ๐ Monitors all search operations
- ๐ Dashboard: https://smith.langchain.com
- ๐งช Test by using the MCP server with Claude
๏ฟฝ๐ You're all set! Your Azure AI Search MCP server is ready to provide intelligent document retrieval and analysis to Claude Desktop, with comprehensive visualization tools and optional LangSmith monitoring for performance insights.
๐ SEO Keywords
Azure AI Search, MCP Server, Claude Desktop, LangGraph, RAG, Retrieval Augmented Generation, Document Search, AI Search Integration, Model Context Protocol, Enterprise Search, Conversational AI, Knowledge Management, Semantic Search, NLP, Machine Learning, Chatbots, Search Engine, Information Retrieval, Python AI, Azure Integration
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.