Azure AI Image Editor MCP Server

Azure AI Image Editor MCP Server

Enables text-to-image generation and image editing using Azure AI Foundry models. Supports generating high-quality images from text descriptions and modifying existing images through natural language prompts.

Category
Visit Server

README

Azure Image Editor MCP Server

中文 | English

This is an MCP (Model Context Protocol) server that supports Azure AI Foundry image generation and editing capabilities.

Features

  1. Text-to-Image Generation - Generate high-quality images from text descriptions using Azure AI Foundry models
  2. Image Editing - Edit and modify existing images
  3. Configurable Models - Support for multiple Azure AI models via environment variables

Project Structure

azure-image-editor/
├── .venv/                        # Python virtual environment
├── src/
│   ├── azure_image_client.py     # Azure API client
│   └── mcp_server.py             # STDIO MCP server
├── tests/                        # Test files
├── logs/                         # Server logs
├── tmp/                          # Temporary files
├── requirements.txt              # Python dependencies
├── .env                          # Environment configuration
├── .env.example                  # Environment configuration template
└── README.md                     # Project documentation

Prerequisites

⚠️ Important: Before using this MCP server, you must deploy the required model in your Azure AI Foundry environment.

Azure AI Foundry Model Deployment

  1. Access Azure AI Foundry: Go to Azure AI Foundry
  2. Deploy the model: Deploy flux.1-kontext-pro (or your preferred model) in your Azure AI Foundry workspace
  3. Get deployment details: Note down your:
    • Base URL (endpoint)
    • API key
    • Deployment name
    • Model name

Without proper model deployment, the MCP server will not function correctly.

Installation and Setup

  1. Clone and setup environment:
git clone https://github.com/satomic/Azure-AI-Image-Editor-MCP.git
cd azure-image-editor
python -m venv .venv
source .venv/bin/activate  # Linux/Mac
# or .venv\Scripts\activate  # Windows
pip install -r requirements.txt

Configure VSCode MCP

Add the following to your VSCode MCP configuration:

{
  "servers": {
    "azure-image-editor": {
      "command": "/full/path/to/.venv/bin/python",
      "args": ["/full/path/to/azure-image-editor/src/mcp_server.py"],
      "env": {
        "AZURE_BASE_URL": "https://your-endpoint.services.ai.azure.com", // deployment endpoint
        "AZURE_API_KEY": "${input:azure-api-key}",
        "AZURE_DEPLOYMENT_NAME": "FLUX.1-Kontext-pro", // The name you gave your deployment
        "AZURE_MODEL": "flux.1-kontext-pro", // Default model
        "AZURE_API_VERSION": "2025-04-01-preview" // Default API version
      }
    }
  },
  "inputs": [
    {
      "id": "azure-api-key",
      "type": "promptString",
      "description": "Enter your Azure API Key",
      "password": "true"
    }
  ]
}

Important: Replace /full/path/to/ with the actual absolute path to this project directory.

Available MCP Tools

1. generate_image

Generate images from text prompts

Parameters:

  • prompt (required): English text description for image generation
  • size (optional): Image size - "1024x1024", "1792x1024", "1024x1792", default: "1024x1024"
  • output_path (optional): Output file path, returns base64 encoded image if not provided

Example:

{
  "name": "generate_image",
  "arguments": {
    "prompt": "A beautiful sunset over mountains",
    "size": "1024x1024",
    "output_path": "/path/to/output/image.png"
  }
}

2. edit_image

Edit existing images with intelligent dimension preservation

Parameters:

  • image_path (required): Path to the image file to edit
  • prompt (required): English text description of how to edit the image
  • size (optional): Output image size, uses original dimensions if not specified
  • output_path (optional): Output file path, returns base64 encoded image if not provided

Example:

{
  "name": "edit_image",
  "arguments": {
    "image_path": "/path/to/input/image.png",
    "prompt": "Make this black and white",
    "output_path": "/path/to/output/edited_image.png"
  }
}

Technical Specifications

  • Python version: 3.8+

  • Main dependencies:

    • mcp: MCP protocol support
    • httpx: HTTP client with timeout handling
    • pillow: Image processing and dimension detection
    • aiofiles: Async file operations
    • pydantic: Data validation
    • python-dotenv: Environment variable management
  • Azure AI Foundry:

    • Default model: flux.1-kontext-pro (configurable)
    • Default API version: 2025-04-01-preview (configurable)
    • Supported image sizes: 1024x1024, 1792x1024, 1024x1792
    • Timeout: 5 minutes per request

Troubleshooting

  1. Timeout Errors: Image processing has 5-minute timeout, check network connectivity
  2. API Errors: Verify Azure credentials and endpoint URL
  3. Dependency Issues: Ensure virtual environment is activated and dependencies installed
  4. Server Connection Issues: Verify VSCode MCP configuration path is correct

License

MIT License

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured