Azure AI Image Editor MCP Server
Enables text-to-image generation and image editing using Azure AI Foundry models. Supports generating high-quality images from text descriptions and modifying existing images through natural language prompts.
README
Azure Image Editor MCP Server
中文 | English
This is an MCP (Model Context Protocol) server that supports Azure AI Foundry image generation and editing capabilities.
Features
- Text-to-Image Generation - Generate high-quality images from text descriptions using Azure AI Foundry models
- Image Editing - Edit and modify existing images
- Configurable Models - Support for multiple Azure AI models via environment variables
Project Structure
azure-image-editor/
├── .venv/ # Python virtual environment
├── src/
│ ├── azure_image_client.py # Azure API client
│ └── mcp_server.py # STDIO MCP server
├── tests/ # Test files
├── logs/ # Server logs
├── tmp/ # Temporary files
├── requirements.txt # Python dependencies
├── .env # Environment configuration
├── .env.example # Environment configuration template
└── README.md # Project documentation
Prerequisites
⚠️ Important: Before using this MCP server, you must deploy the required model in your Azure AI Foundry environment.
Azure AI Foundry Model Deployment
- Access Azure AI Foundry: Go to Azure AI Foundry
- Deploy the model: Deploy
flux.1-kontext-pro(or your preferred model) in your Azure AI Foundry workspace - Get deployment details: Note down your:
- Base URL (endpoint)
- API key
- Deployment name
- Model name
Without proper model deployment, the MCP server will not function correctly.
Installation and Setup
- Clone and setup environment:
git clone https://github.com/satomic/Azure-AI-Image-Editor-MCP.git
cd azure-image-editor
python -m venv .venv
source .venv/bin/activate # Linux/Mac
# or .venv\Scripts\activate # Windows
pip install -r requirements.txt
Configure VSCode MCP
Add the following to your VSCode MCP configuration:
{
"servers": {
"azure-image-editor": {
"command": "/full/path/to/.venv/bin/python",
"args": ["/full/path/to/azure-image-editor/src/mcp_server.py"],
"env": {
"AZURE_BASE_URL": "https://your-endpoint.services.ai.azure.com", // deployment endpoint
"AZURE_API_KEY": "${input:azure-api-key}",
"AZURE_DEPLOYMENT_NAME": "FLUX.1-Kontext-pro", // The name you gave your deployment
"AZURE_MODEL": "flux.1-kontext-pro", // Default model
"AZURE_API_VERSION": "2025-04-01-preview" // Default API version
}
}
},
"inputs": [
{
"id": "azure-api-key",
"type": "promptString",
"description": "Enter your Azure API Key",
"password": "true"
}
]
}
Important: Replace /full/path/to/ with the actual absolute path to this project directory.
Available MCP Tools
1. generate_image
Generate images from text prompts
Parameters:
prompt(required): English text description for image generationsize(optional): Image size - "1024x1024", "1792x1024", "1024x1792", default: "1024x1024"output_path(optional): Output file path, returns base64 encoded image if not provided
Example:
{
"name": "generate_image",
"arguments": {
"prompt": "A beautiful sunset over mountains",
"size": "1024x1024",
"output_path": "/path/to/output/image.png"
}
}
2. edit_image
Edit existing images with intelligent dimension preservation
Parameters:
image_path(required): Path to the image file to editprompt(required): English text description of how to edit the imagesize(optional): Output image size, uses original dimensions if not specifiedoutput_path(optional): Output file path, returns base64 encoded image if not provided
Example:
{
"name": "edit_image",
"arguments": {
"image_path": "/path/to/input/image.png",
"prompt": "Make this black and white",
"output_path": "/path/to/output/edited_image.png"
}
}
Technical Specifications
-
Python version: 3.8+
-
Main dependencies:
mcp: MCP protocol supporthttpx: HTTP client with timeout handlingpillow: Image processing and dimension detectionaiofiles: Async file operationspydantic: Data validationpython-dotenv: Environment variable management
-
Azure AI Foundry:
- Default model: flux.1-kontext-pro (configurable)
- Default API version: 2025-04-01-preview (configurable)
- Supported image sizes: 1024x1024, 1792x1024, 1024x1792
- Timeout: 5 minutes per request
Troubleshooting
- Timeout Errors: Image processing has 5-minute timeout, check network connectivity
- API Errors: Verify Azure credentials and endpoint URL
- Dependency Issues: Ensure virtual environment is activated and dependencies installed
- Server Connection Issues: Verify VSCode MCP configuration path is correct
License
MIT License
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.