AWS Athena MCP Server

AWS Athena MCP Server

Enables AI assistants to execute SQL queries against AWS Athena databases, check query status, retrieve results, and manage saved queries with support for both local and remote deployment via Lambda.

Category
Visit Server

README

@lishenxydlgzs/aws-athena-mcp

smithery badge

A Model Context Protocol (MCP) server for running AWS Athena queries. This server enables AI assistants to execute SQL queries against your AWS Athena databases and retrieve results.

Features:

  • Execute SQL queries via AWS Athena
  • Support for both stdio (local) and Lambda + API Gateway (remote) deployment
  • OAuth 2.0 authentication via AWS Cognito (Lambda deployment)
  • Async query execution with status polling
  • Named query support

<a href="https://glama.ai/mcp/servers/0i7dhkex6t"> <img width="380" height="200" src="https://glama.ai/mcp/servers/0i7dhkex6t/badge" alt="aws-athena-mcp MCP server" /> </a>

Deployment Options

Option 1: Local (stdio) - For MCP Clients

Use with Claude Desktop, Cline, or other MCP clients:

Option 1: Local (stdio) - For MCP Clients

Use with Claude Desktop, Cline, or other MCP clients:

  1. Configure AWS credentials using one of the following methods:

    • AWS CLI configuration
    • Environment variables (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)
    • IAM role (if running on AWS)
  2. Add the server to your MCP configuration:

{
  "mcpServers": {
    "athena": {
      "command": "npx",
      "args": ["-y", "@lishenxydlgzs/aws-athena-mcp"],
      "env": {
        // Required
        "OUTPUT_S3_PATH": "s3://your-bucket/athena-results/",
        
        // Optional AWS configuration
        "AWS_REGION": "us-east-1",                    // Default: AWS CLI default region
        "AWS_PROFILE": "default",                     // Default: 'default' profile
        "AWS_ACCESS_KEY_ID": "",                      // Optional: AWS access key
        "AWS_SECRET_ACCESS_KEY": "",                  // Optional: AWS secret key
        "AWS_SESSION_TOKEN": "",                      // Optional: AWS session token
        
        // Optional server configuration
        "ATHENA_WORKGROUP": "default_workgroup",      // Optional: specify the Athena WorkGroup
        "QUERY_TIMEOUT_MS": "300000",                 // Default: 5 minutes (300000ms)
        "MAX_RETRIES": "100",                         // Default: 100 attempts
        "RETRY_DELAY_MS": "500"                       // Default: 500ms between retries
      }
    }
  }
}

Option 2: Lambda + API Gateway - For Remote Access

Deploy as a serverless API with OAuth 2.0 authentication:

# 首次部署(交互式配置)
./deploy.sh

# 或快速部署(使用已有配置)
./deploy-quick.sh

部署脚本会自动:

  • 构建 TypeScript 代码
  • 使用 SAM 部署到 AWS
  • 创建 Cognito User Pool 和 App Client
  • 配置 API Gateway OAuth 认证
  • 输出完整的 OAuth 配置信息(包括 Client Secret)
  • 保存配置到 .env.oauth 文件

部署后输出示例:

================================================
🎉 部署配置信息
================================================

📡 API 端点:
   https://xxxxx.execute-api.us-east-1.amazonaws.com/prod/mcp

🔐 OAuth 认证配置:
   Client ID:     xxxxxxxxxxxxxxxxxxxxx
   Client Secret: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
   Token URL:     https://xxxxx.auth.us-east-1.amazoncognito.com/oauth2/token
   Scopes:        athena-mcp-api/read athena-mcp-api/write

🏢 AWS 资源:
   User Pool ID:  us-east-1_xxxxx
   Function ARN:  arn:aws:lambda:us-east-1:xxxxx:function:xxxxx

测试部署:

# 测试 OAuth 认证
./test-cognito-auth.sh

# 测试查询执行
./test-oauth-query.sh "SELECT * FROM my_table LIMIT 5" "my_database"

手动获取配置(如果需要):

# Get Client ID and Token URL from CloudFormation outputs
aws cloudformation describe-stacks --stack-name aws-athena-mcp-stack \
  --query "Stacks[0].Outputs"

# Get Client Secret
aws cognito-idp describe-user-pool-client \
  --user-pool-id <USER_POOL_ID> \
  --client-id <CLIENT_ID> \
  --query "UserPoolClient.ClientSecret" \
  --output text

Client Integration:

// See examples/oauth-client-example.ts for full implementation
import { AthenaMcpClient } from './examples/oauth-client-example';

const client = new AthenaMcpClient({
  clientId: process.env.COGNITO_CLIENT_ID!,
  clientSecret: process.env.COGNITO_CLIENT_SECRET!,
  tokenUrl: process.env.COGNITO_TOKEN_URL!,
  apiEndpoint: process.env.API_ENDPOINT!,
});

await client.initialize();
const result = await client.runQuery('my_db', 'SELECT * FROM my_table LIMIT 10');

For detailed OAuth setup instructions, see OAUTH-SETUP-GUIDE.md.


Available Tools

The server provides the following tools:

  • run_query: Execute a SQL query using AWS Athena

    • Parameters:
      • database: The Athena database to query
      • query: SQL query to execute
      • maxRows: Maximum number of rows to return (default: 1000, max: 10000)
    • Returns:
      • If query completes within timeout: Full query results
      • If timeout reached: Only the queryExecutionId for later retrieval
  • get_status: Check the status of a query execution

    • Parameters:
      • queryExecutionId: The ID returned from run_query
    • Returns:
      • state: Query state (QUEUED, RUNNING, SUCCEEDED, FAILED, or CANCELLED)
      • stateChangeReason: Reason for state change (if any)
      • submissionDateTime: When the query was submitted
      • completionDateTime: When the query completed (if finished)
      • statistics: Query execution statistics (if available)
  • get_result: Retrieve results for a completed query

    • Parameters:
      • queryExecutionId: The ID returned from run_query
      • maxRows: Maximum number of rows to return (default: 1000, max: 10000)
    • Returns:
      • Full query results if the query has completed successfully
      • Error if query failed or is still running
  • list_saved_queries: List all saved (named) queries in Athena.

  • Returns:

    • An array of saved queries with id, name, and optional description
    • Queries are returned from the configured ATHENA_WORKGROUP and AWS_REGION
  • run_saved_query: Run a previously saved query by its ID.

  • Parameters:

    • namedQueryId: ID of the saved query
    • databaseOverride: Optional override of the saved query's default database
    • maxRows: Maximum number of rows to return (default: 1000)
    • timeoutMs: Timeout in milliseconds (default: 60000)
  • Returns:

    • Same behavior as run_query: full results or execution ID

Usage Examples

Show All Databases

Message to AI Assistant: List all databases in Athena

MCP parameter:

{
  "database": "default",
  "query": "SHOW DATABASES"
}

List Tables in a Database

Message to AI Assistant: Show me all tables in the default database

MCP parameter:

{
  "database": "default",
  "query": "SHOW TABLES"
}

Get Table Schema

Message to AI Assistant: What's the schema of the asin_sitebestimg table?

MCP parameter:

{
  "database": "default",
  "query": "DESCRIBE default.asin_sitebestimg"
}

Table Rows Preview

Message to AI Assistant: Show some rows from my_database.mytable

MCP parameter:

{
  "database": "my_database",
  "query": "SELECT * FROM my_table LIMIT 10",
  "maxRows": 10
}

Advanced Query with Filtering and Aggregation

Message to AI Assistant: Find the average price by category for in-stock products

MCP parameter:

{
  "database": "my_database",
  "query": "SELECT category, COUNT(*) as count, AVG(price) as avg_price FROM products WHERE in_stock = true GROUP BY category ORDER BY count DESC",
  "maxRows": 100
}

Checking Query Status

{
  "queryExecutionId": "12345-67890-abcdef"
}

Getting Results for a Completed Query

{
  "queryExecutionId": "12345-67890-abcdef",
  "maxRows": 10
}

Listing Saved Queries

{
  "name": "list_saved_queries",
  "arguments": {}
}

Running a Saved Query

{
  "name": "run_saved_query",
  "arguments": {
    "namedQueryId": "abcd-1234-efgh-5678",
    "maxRows": 100
  }
}

Requirements

  • Node.js >= 16
  • AWS credentials with appropriate Athena and S3 permissions
  • S3 bucket for query results
  • Named queries (optional) must exist in the specified ATHENA_WORKGROUP and AWS_REGION

License

MIT

Repository

GitHub Repository

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured