Awels PDF Processing Server
Enables conversion of PDF files to Markdown format with optional image extraction using docling. Supports batch processing of multiple PDFs with structured output including metadata and processing statistics.
README
Awels MCP Server - PDF Processing Tool
A Model Context Protocol (MCP) server that provides PDF processing capabilities using docling. This server exposes a single tool to convert PDF files to Markdown format with optional image extraction, designed to run in isolated environments to avoid permission issues.
Project Structure
awels-mcp/
├── src/
│ └── awels_mcp/
│ ├── pdf_processor/ # PDF processing functionality
│ │ └── __init__.py # PDFProcessor implementation
│ ├── __init__.py # Package initialization
│ ├── run_server.py # Server entry point
│ └── server.py # MCP server implementation
├── tests/ # Test files
│ ├── artifacts/ # Test artifacts (PDFs, outputs)
│ │ ├── test_output_md/ # Generated markdown files
│ │ ├── test_output_images/# Extracted images
│ │ └── test_pdfs/ # Sample PDFs for testing
│ ├── test_client.py # Test MCP client
│ ├── test_pdf_processor.py # Unit tests for PDF processing
│ └── test_server.py # Server tests
├── .gitignore
├── INSTALL.md # Installation instructions
├── LICENSE
├── PLAN.md
├── README.md # This file
├── pyproject.toml # Project metadata and dependencies
└── requirements.txt # Development dependencies
Features
- PDF to Markdown Conversion: Convert PDF files to clean Markdown format using docling
- Image Extraction: Extract images from PDFs (page images, tables, figures)
- Batch Processing: Process multiple PDF files in a directory (with recursive search)
- Structured Output: Returns detailed JSON results with file metadata and processing statistics
- Isolated Execution: Designed to run with
uvx --isolatedto prevent permission issues - Error Handling: Graceful handling of permission errors and processing failures
Installation
See INSTALL.md for detailed installation instructions using uv.
Quick Start
- Install the package in development mode:
uv venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
uv pip install -e .
- Run the tests to verify the installation:
pytest tests/
- Start the MCP server:
python -m src.awels_mcp.run_server
- In a separate terminal, run the test client:
python tests/test_client.py
Running Tests
The test suite includes:
- Unit tests for the PDF processor
- Integration tests for the MCP server
- End-to-end tests with the client
To run all tests:
pytest tests/
Test artifacts (generated markdown and images) are saved in the tests/artifacts/ directory.
Development
Project Structure
src/awels_mcp/: Main package source codepdf_processor/: PDF processing functionalityserver.py: MCP server implementationrun_server.py: Entry point for the MCP server
Adding New Features
- Create a new branch for your feature
- Add tests for your feature in the appropriate test file
- Implement your feature
- Run tests to ensure everything works
- Submit a pull request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Integration with MCP Clients
Add to your MCP client configuration (e.g., Claude Desktop):
{
"mcpServers": {
"awels-pdf-processor": {
"command": "uvx",
"args": [
"--python=3.12",
"--isolated",
"--from=git+https://github.com/your-org/awels-mcp.git",
"awels-mcp-server"
]
}
}
}
Tool Reference
convert_pdf
Converts PDF files in a directory to Markdown with optional image extraction.
Parameters:
directory(string, required): Directory path to search for PDF filesrecursive(boolean, optional): Whether to search recursively in subdirectories (default: true)markdown_output_path(string, optional): Directory to save markdown filesimages_dir(string, optional): Directory to extract images from PDFs
Returns: Structured JSON with processing results:
{
"summary": {
"total_files": 5,
"successful": 4,
"failed": 1,
"total_pages": 120,
"total_images_extracted": 25
},
"files": {
"/path/to/file1.pdf": {
"filename": "file1.pdf",
"name": "file1.pdf",
"size": 1024000,
"modified": 1640995200.0,
"pages": 10,
"metadata": {
"title": "Document Title",
"author": "Author Name",
"subject": "Document Subject"
},
"extracted_images": [
"/path/to/images/file1-page-1.png",
"/path/to/images/file1-table-1.png"
],
"markdown_file": "/path/to/markdown/file1.md",
"content": "# Document Title\n\nDocument content in markdown..."
},
"/path/to/file2.pdf": {
"error": "Failed to convert PDF: Permission denied"
}
}
}
Usage Examples
Basic PDF Conversion
# Convert all PDFs in a directory to markdown (content returned in response)
convert_pdf(directory="/path/to/pdfs")
Save Markdown Files
# Convert PDFs and save markdown files to disk
convert_pdf(
directory="/path/to/pdfs",
markdown_output_path="/path/to/output/markdown"
)
Extract Images
# Convert PDFs and extract all images
convert_pdf(
directory="/path/to/pdfs",
markdown_output_path="/path/to/output/markdown",
images_dir="/path/to/output/images"
)
Non-Recursive Search
# Only process PDFs in the specified directory (no subdirectories)
convert_pdf(
directory="/path/to/pdfs",
recursive=false
)
Architecture
The server uses:
- FastMCP: High-level MCP server framework for easy tool definition
- docling: Advanced PDF processing library for text and image extraction
- Pydantic: Data validation and structured output
- Isolated execution: Runs in isolated environment to prevent permission issues
Error Handling
The server gracefully handles:
- Permission errors (designed to run in isolated environments)
- Missing directories
- Corrupted PDF files
- Processing failures
- File system errors
All errors are reported in the structured output with detailed error messages.
Development
Project Structure
awels/
├── src/
│ └── awels_mcp/
│ ├── __init__.py
│ ├── server.py # Main MCP server implementation
│ └── pdf_processor.py # PDF processing logic
├── pyproject.toml # Package configuration
├── README.md # This file
└── PLAN.md # Development plan
Running Tests
# Install development dependencies
uv sync --group dev
# Run tests (when available)
uv run pytest
Code Formatting
# Format code
uv run black src/
uv run isort src/
# Type checking
uv run mypy src/
Requirements
- Python 3.10+
- docling and docling-core libraries
- MCP Python SDK
- Sufficient disk space for temporary files and model downloads
License
MIT License - see LICENSE file for details.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
Support
For issues and questions:
- GitHub Issues: https://github.com/your-org/awels-mcp/issues
- Documentation: See PLAN.md for technical details
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.