AutoDev MCP
A dual-track testing server that combines CLI test execution with Playwright-based browser testing and persistent SQLite logging. It enables automated test pipelines, Git integration, and evidence-based requirement generation to streamline the development lifecycle.
README
AutoDev MCP (Dual-Track Testing)
AutoDev MCP is a TypeScript MCP server that keeps your original CLI testing and adds an extra Chrome Dev (browser) testing track with persistent logs.
What it does
- Keeps original test flow via CLI (
run_tests) - not replaced - Adds browser test flow (
browser_*tools) via Playwright + CDP events - Persists everything to SQLite:
- sessions
- logs (cli/browser/console/error/network/assertion)
- screenshots
- Supports combined execution via
run_pipeline - After pipeline completion, automatically provides 10 requirement/optimization directions (中文输出)
Install
npm install
npm run build
Run MCP server (stdio)
npm run start
For local development:
npm run dev
Optional config: autodev.config.json
{
"projectRoot": ".",
"storage": {
"databasePath": ".autodev/logs/autodev.db",
"screenshotsDir": ".autodev/logs/screenshots"
},
"commands": {
"test": "npm test"
},
"browser": {
"headless": true,
"timeoutMs": 15000
},
"pipeline": {
"maxIterations": 3
},
"compact": {
"enabled": true,
"warningThreshold": 0.8,
"compactThreshold": 1.0,
"estimatedMaxChars": 120000
},
"git": {
"enabled": true,
"autoCommitOnFeatureComplete": true,
"defaultCommitPrefix": "feat",
"protectSensitiveFiles": true,
"sensitiveFilePatterns": [
"(^|/)\\.env(\\..*)?$",
"(^|/)credentials\\.json$",
"(^|/)secret(s)?(\\.|$)",
"(^|/).+\\.pem$",
"(^|/).+\\.key$"
]
}
}
Tool overview
CLI track (original)
run_testsgenerate_tests(stub)fix_failures(stub)
Browser track (new, additional)
browser_openbrowser_navigatebrowser_interactbrowser_assertbrowser_screenshotbrowser_get_consolebrowser_get_errorsbrowser_get_networkbrowser_close
Orchestration/query
run_pipeline(CLI first, browser optional)propose_requirements(always outputs 10 directions)check_compact(检查上下文占用并给出 none/warn/compact 建议)git_commit_feature(小功能完成后按策略提交 git)git_status_summary(查看当前仓库改动状态)test_get_session_logstest_compare_sessions
Example workflow
- Run original tests:
- call
run_tests
- call
- Start browser session:
- call
browser_openwith URL
- call
- Interact and assert:
browser_interactbrowser_assert
- Capture screenshot if needed:
browser_screenshot
- Close and finalize summary:
browser_close
- Query persisted logs:
test_get_session_logs
- Generate next-cycle demand directions:
propose_requirements
run_pipeline also includes suggestedRequirements in the final output so you can directly pick your next approved requirement.
run_pipeline now also returns compactSuggestion:
none: 上下文充足,继续执行warn: 上下文超过预警阈值(默认 80%),建议当前小任务结束后 compactcompact: 上下文达到 compact 阈值(默认 100%),建议立即 compact
run_pipeline 现在也会在测试通过后尝试执行 gitCommit:
- 若目录是 git 仓库且存在可提交改动,会自动提交
- 若不是 git 仓库,自动跳过并给出原因
- 默认会拦截疑似敏感文件(如
.env、*.pem、*.key)
测试日志与截图位置
- SQLite 数据库:
.autodev/logs/autodev.db - 截图目录:
.autodev/logs/screenshots
你可以通过 MCP 工具查看:
test_get_session_logs:按 sessionId 拉取日志、摘要、截图路径test_compare_sessions:对比两次测试结果
评分标准(需求方向)
每条方向的评分由以下字段组成:
impact:影响面(1-10)confidence:把握度(1-10)effort:工作量映射分值(S=2, M=5, L=8)
公式:
priorityScore = (impact × confidence) / effort
分数越高,优先级越高。
Notes
- Browser track is explicitly additive and independent from original CLI tests.
generate_testsandfix_failuresare stubs in this version and intentionally logged for future extension.- Requirement generation is evidence-based (sessions/logs/assertions/errors) and returns exactly 10 scored directions each cycle (中文输出).
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.