atlas-g-protocol

atlas-g-protocol

Resume-as-an-Agent (RAAA) or Portfolio-as-an-Agent (PAAA) allows Agents to talk to your resume, find out if you are available for work, and more. Use the MCP to allow recruiters, managers, and anyone with an agent to "talk" to your resume.

Category
Visit Server

README

Atlas-G Protocol

Agentic Portfolio System - A compliance-grade MCP server that serves as both human and machine-readable portfolio.

Python FastAPI Cloud Run MCP <a href="https://glama.ai/mcp/servers/@MichaelWeed/atlas-g-protocol"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@MichaelWeed/atlas-g-protocol/badge" /> </a>

šŸŽÆ Overview

Atlas-G Protocol transforms a traditional developer portfolio into an autonomous agent that demonstrates compliance-grade engineering in real-time. Instead of reading about experience with "strict state management" and "hallucination mitigation," users interact with an agent that actively demonstrates these capabilities.

Key Features

  • MCP Server: Machine-readable portfolio accessible by AI development environments
  • Governance Layer: Real-time hallucination mitigation via knowledge graph validation
  • Live Audit Log: Streams internal compliance checks to the UI
  • WebSocket Streaming: Real-time "Thought-Action" loop visualization
  • CSP Headers: Configured for DEV.to iframe embedding

šŸ”’ Privacy & Data Governance

The Atlas-G Protocol follows a "Private-by-Design" pattern to ensure sensitive career data isn't leaked in public repositories:

  • Template Pattern: All proprietary information (work history, PII) is stored in data/resume.txt, which is explicitly excluded from the repository via .gitignore.
  • resume.template.txt: A sanitized template is provided for open-source users to populate with their own data.
  • Hallucination Mitigation: The agent's governance layer validates every claim against the local resume.txt knowledge graph before responding.

šŸ—ļø Architecture

ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”
│                   Cloud Run Instance                 │
ā”œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¤
│  ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”    ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā” │
│  │  React Frontend │◄──►│  FastAPI Backend        │ │
│  │  (Terminal UI)  │    │  - Agent Core           │ │
│  ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜    │  - Governance Layer     │ │
│                         │  - MCP Server           │ │
│                         ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜ │
│                                     │               │
│                         ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā–¼ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā” │
│                         │  Tools                  │ │
│                         │  - query_resume         │ │
│                         │  - verify_employment    │ │
│                         │  - audit_project        │ │
│                         ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜ │
ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜

šŸš€ Quick Start

Prerequisites

  • Python 3.11+
  • Google Cloud API Key (for Gemini)

Installation

# Clone the repository
cd Atlas-G\ Protocol

# Create virtual environment
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install dependencies
pip install -e ".[dev]"

# Copy environment template
cp .env.example .env
# Edit .env with your GOOGLE_API_KEY

Run Locally

# Start the server
uvicorn backend.main:application --reload --port 8080

# Open http://localhost:8080

Run Tests

pytest backend/tests/ -v

šŸ”§ MCP Integration

Connect your AI development environment to the Atlas-G MCP server:

{
  "mcpServers": {
    "atlas-g-protocol": {
      "command": "python",
      "args": ["-m", "backend.mcp_server"]
    }
  }
}

Available Tools

Tool Description
query_resume Semantic search over resume knowledge graph
verify_employment Cross-reference employment claims
audit_project Deep-dive into project architecture

ā˜ļø Deploy to Cloud Run

gcloud run deploy atlas-g-portfolio \
  --source . \
  --allow-unauthenticated \
  --region us-central1 \
  --labels dev-tutorial=devnewyear2026 \
  --set-env-vars GOOGLE_API_KEY=your_key_here

šŸ“ Project Structure

Atlas-G Protocol/
ā”œā”€ā”€ backend/
│   ā”œā”€ā”€ __init__.py
│   ā”œā”€ā”€ main.py          # FastAPI application
│   ā”œā”€ā”€ agent.py         # Thought-Action loop
│   ā”œā”€ā”€ governance.py    # Hallucination mitigation
│   ā”œā”€ā”€ mcp_server.py    # FastMCP wrapper
│   ā”œā”€ā”€ config.py        # Settings management
│   └── tools/
│       ā”œā”€ā”€ resume_rag.py
│       └── verification.py
ā”œā”€ā”€ frontend/            # React UI (Phase 3)
ā”œā”€ā”€ data/
│   └── resume.txt       # Knowledge graph source
ā”œā”€ā”€ Dockerfile
ā”œā”€ā”€ pyproject.toml
└── mcp_config.json

šŸ”’ Security

  • CSP Headers: frame-ancestors 'self' https://dev.to https://*.dev.to
  • Governance Layer: All AI responses validated against resume data
  • PII Detection: Automatic filtering of sensitive information
  • Jailbreak Protection: Pattern-based detection and blocking

šŸ“„ License

MIT License - See LICENSE for details.

šŸ“¢ Credits

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured