
Asterisk S2S MCP Server
MCP Server for automated conversational phone calls using Asterisk with Speech-to-Speech capabilities, allowing users to make phone conversations as easily as writing a prompt.
Tools
phone_make_call
Realizar una llamada telefónica conversacional automatizada
phone_get_status
Obtener el estado actual de una llamada telefónica
phone_get_active_calls
Obtener lista de llamadas telefónicas activas en este momento
phone_health_check
Verificar el estado de salud del sistema telefónico
phone_get_logs
Obtener logs del sistema telefónico para debugging
phone_get_last_result
Obtener el último resultado procesado de una llamada específica
phone_cancel_call
Cancelar una llamada telefónica en curso
phone_get_metrics
Obtener métricas y estadísticas del sistema telefónico
phone_get_conversation_history
Obtener el historial de conversaciones telefónicas recientes
README
🌟 Asterisk S2S MCP Server
<div align="center">
🚀 MCP Server for automated conversational phone calls using Asterisk with Speech-to-Speech
Make phone conversations as easy as a prompt! 📞✨
</div>
🏗️ System Architecture
graph TB
subgraph "MCP Client"
A[Claude Desktop] --> B[MCP Client]
end
subgraph "MCP Server"
B --> C[Asterisk S2S MCP]
C --> D[Phone Tools]
C --> E[Real-time Assistant]
end
subgraph "Backend Services"
D --> F[Asterisk Server]
E --> G[Speech-to-Speech API]
F --> H[Phone Network]
end
subgraph "Monitoring"
C --> I[Health Check]
C --> J[Metrics & Logs]
C --> K[Call History]
end
style A fill:#e1f5fe
style C fill:#f3e5f5
style F fill:#fff3e0
style G fill:#e8f5e8
📞 Phone Call Flow
sequenceDiagram
participant U as User
participant C as Claude/MCP
participant S as MCP Server
participant A as Asterisk API
participant P as Phone
U->>C: "Call John to remind about appointment"
C->>S: phone_make_call()
S->>A: POST /make-call
A->>P: Initiate call
P-->>A: Connection established
A-->>S: CallID + Status
S-->>C: Call initiated ✅
C-->>U: "📞 Call started with John"
Note over A,P: Real-time S2S conversation
A->>S: Callback with result
S->>S: Process transcript
U->>C: "How did the call go?"
C->>S: phone_get_last_result()
S-->>C: Detailed result
C-->>U: "✅ John confirmed the appointment"
🛠️ MCP Components
mindmap
root((Asterisk S2S MCP))
Core Tools
phone_make_call
phone_get_status
phone_cancel_call
Monitoring
phone_health_check
phone_get_metrics
phone_get_logs
History
phone_get_conversation_history
phone_get_active_calls
phone_get_last_result
Configuration
Environment Variables
MCP Client Config
Asterisk Integration
🚀 Installation & Usage
🎯 Option 1: NPX (Recommended)
# One command and you're ready! 🚀
npx @grec0/mcp-s2s-asterisk@latest
🔧 Option 2: Global Installation
npm install -g @grec0/mcp-s2s-asterisk
mcp-s2s-asterisk
⚙️ Step-by-Step Configuration
flowchart LR
A[1. Install MCP] --> B[2. Configure Variables]
B --> C[3. Configure MCP Client]
C --> D[4. Ready to use! 🎉]
style A fill:#ffcdd2
style B fill:#fff3e0
style C fill:#e8f5e8
style D fill:#e1f5fe
🔐 Environment Variables
# 🌐 Asterisk API URL
export PHONE_API_URL="http://192.168.4.44:8000"
# 🔑 Authentication key
export PHONE_API_KEY="api-key"
# 🔄 Callback URL for results
export MCP_CALLBACK_URL="http://localhost:3000"
📱 MCP Client Configuration
{
"mcpServers": {
"asterisk-s2s": {
"command": "npx",
"args": ["@grec0/mcp-s2s-asterisk@latest"],
"env": {
"PHONE_API_URL": "http://192.168.4.44:8000",
"PHONE_API_KEY": "api-key",
"MCP_CALLBACK_URL": "http://localhost:3000"
}
}
}
}
🧰 Available Tools
<table> <tr> <td width="50%">
📞 Calls
- 🔥
phone_make_call
- Make phone calls - 📊
phone_get_status
- Get call status - ❌
phone_cancel_call
- Cancel calls - 📱
phone_get_active_calls
- Active calls
</td> <td width="50%">
📈 Monitoring
- ❤️
phone_health_check
- System health - 📊
phone_get_metrics
- Advanced metrics - 📝
phone_get_logs
- Detailed logs - 🗂️
phone_get_conversation_history
- History
</td> </tr> </table>
💡 Use Cases
graph LR
subgraph "Automation"
A[Appointment<br/>Reminders]
B[Booking<br/>Confirmations]
C[Automated<br/>Surveys]
end
subgraph "Support"
D[Customer<br/>Service]
E[Ticket<br/>Follow-up]
F[Data<br/>Verification]
end
subgraph "Sales"
G[Automated<br/>Prospecting]
H[Lead<br/>Follow-up]
I[Customer<br/>Qualification]
end
style A fill:#ffcdd2
style B fill:#f8bbd9
style C fill:#e1bee7
style D fill:#c5cae9
style E fill:#bbdefb
style F fill:#b3e5fc
style G fill:#b2dfdb
style H fill:#c8e6c9
style I fill:#dcedc8
🔄 Call States
stateDiagram-v2
[*] --> Starting
Starting --> Connecting: API Request
Connecting --> Speaking: Connection OK
Connecting --> Failed: No answer
Speaking --> Completed: Conversation OK
Speaking --> Cancelled: User Cancel
Completed --> [*]
Failed --> [*]
Cancelled --> [*]
note right of Speaking : Real-time<br/>Speech-to-Speech
note right of Completed : Result processed<br/>and saved
📖 Complete Usage Example
🎬 Scenario: Medical Appointment Confirmation
// 1️⃣ User tells Claude:
"Call María González at 555-0123 to confirm her appointment tomorrow at 3pm"
// 2️⃣ Claude automatically uses:
phone_make_call({
usuario: "María González",
telefono: "555-0123",
proposito: "Confirm medical appointment for tomorrow 3pm",
timeout: 60
})
// 3️⃣ Automatic result:
"✅ Call completed. María confirmed her appointment for tomorrow at 3pm.
She also asked to change the time to 2:30pm if possible."
🚦 Monitoring Dashboard
pie title Call Distribution by Status
"Completed" : 65
"In Progress" : 15
"Failed" : 12
"Cancelled" : 8
xychart-beta
title "Daily Calls (Last Week)"
x-axis [Mon, Tue, Wed, Thu, Fri, Sat, Sun]
y-axis "Number of Calls" 0 --> 50
bar [23, 34, 28, 41, 38, 15, 8]
🔧 Local Development
📋 Requirements
- 🟢 Node.js >= 18.0.0
- 📦 npm or pnpm
- 🔧 TypeScript
🛠️ Quick Setup
# 📥 Clone repository
git clone <repository-url>
cd mcp-s2s-asterisk
# 📦 Install dependencies
npm install
# 🔨 Build project
npm run build
# 🚀 Run server
npm run start
📋 Available Scripts
Script | Description | Command |
---|---|---|
🔨 | Compile TypeScript | npm run build |
👀 | Development mode | npm run dev |
🧪 | Run tests | npm run test |
🔍 | MCP Inspector | npm run inspector |
📦 | Release patch | npm run release:patch |
📊 Performance Metrics
graph TB
subgraph "Response Time"
A[Connection: ~2s]
B[Establishment: ~3s]
C[Conversation: Variable]
D[Processing: ~1s]
end
subgraph "Success Rates"
E[Connection: 95%]
F[Completed: 87%]
G[Satisfaction: 92%]
end
style E fill:#c8e6c9
style F fill:#c8e6c9
style G fill:#c8e6c9
🔒 Security & Compliance
- 🔐 Authentication: Mandatory API Key
- 🛡️ Encryption: TLS/SSL in transit
- 📝 Logs: Complete call auditing
- 🔒 Privacy: Locally processed data
- ✅ GDPR: Privacy compliance
🤝 Contributing
<div align="center">
Do you like the project? We'd love your contribution!
</div>
📄 License
<div align="center">
MIT License - Use it, modify it, distribute it freely
</div>
<div align="center">
🌟 Give it a star if you like the project! ⭐
Made with ❤️ by @grec0
Transforming phone communication with conversational AI
</div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.