AskDocs MCP Server
Enables semantic search and retrieval of information from technical documentation PDFs using RAG-powered natural language queries with Ollama embeddings and LLMs.
README
AskDocs MCP Server
A Model Context Protocol (MCP) server that provides RAG-powered semantic search over technical documentation PDFs using Ollama.
Features
- Semantic search with natural language queries
- Multiple PDF documents with page citations
- Docker support with persistent caching
- TOML-based configuration
Quick Start
1. Create askdocs-mcp.toml in your project's docs directory:
[[doc]]
name = "my_manual"
description = "My Product Manual"
path = "pdf/manual.pdf"
2. Run with Docker:
docker run -it --rm --network=host -v ./docs:/docs askdocs-mcp:latest
askdocs-mcp expects an Ollama server to be running on http://localhost:11434.
3. Directory structure:
docs/
├── askdocs-mcp.toml # Configuration
├── .askdocs-cache/ # Vector store (auto-created)
└── pdf/
└── manual.pdf
Add **/.askdocs-cache/** to your .gitignore file.
Configuration
# Optional: Configure models
embedding_model = "snowflake-arctic-embed:latest"
llm_model = "qwen3:14b"
[[doc]]
name = "unique_identifier"
description = "Human description"
path = "pdf/document.pdf"
Using the MCP Server:
Cursor (~/.cursor/mcp.json or <project-root>/.cursor/mcp.json)
{
"mcpServers": {
"askdocs-mcp": {
"command": "docker",
"args": [
"run", "-i", "--rm",
"--network=host",
"--volume=${workspaceFolder}/docs:/docs",
"ghcr.io/dymk/askdocs-mcp:latest"
]
}
}
}
Codex (~/.codex/config.toml)
[mcp_servers.askdocs-mcp]
command = "docker"
args = [
"run", "-i", "--rm",
"--network=host",
"--volume=/your/workspace/folder/docs:/docs",
"ghcr.io/dymk/askdocs-mcp:latest"
]
Environment variable:
ASKDOCS_OLLAMA_URL: Ollama server URL (default:http://localhost:11434)
Available Tools
list_docs()
List all documentation sources.
ask_docs(source_name: str, query: str)
Search documentation with natural language.
get_doc_page(source_name: str, page_start: int, page_end: int = None)
Retrieve full text from specific pages.
Requirements
Ollama must be running with the required models:
ollama pull snowflake-arctic-embed:latest
ollama pull qwen3:14b
Building
# Docker
docker build -t askdocs-mcp:latest .
# Local
uv sync
uv run askdocs-mcp --docs-dir /path/to/docs
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.