ASCII Banner MCP Server

ASCII Banner MCP Server

An MCP server for getting ASCII banners

Category
Visit Server

README

ASCII Banner MCP Server

A classical Model Context Protocol (MCP) server that generates ASCII art banners from any string using pyfiglet.

<a href="https://glama.ai/mcp/servers/@guilyx/ascii-banner-mcp"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@guilyx/ascii-banner-mcp/badge" /> </a>

Features

  • get_fonts — List all available pyfiglet font names (via FigletFont.getFonts()).
  • generate_banner — Render a string as ASCII art with a chosen font (via figlet_format(text, font=...)).

Requirements

  • Python ≥ 3.10
  • mcp, pyfiglet

Installation

From the project root:

pip install -e .

For development (tests):

pip install -e ".[dev]"

Usage

Run the server (stdio)

MCP clients typically run the server as a subprocess and talk over stdio:

python -m ascii_banner_mcp.server

Or after install:

ascii-banner-mcp

Config example

Copy and adjust one of the examples in config/:

Configure your MCP client

Add the server to your MCP client config (e.g. Cursor, Claude Desktop). Example (stdio):

{
  "mcpServers": {
    "ascii-banner": {
      "command": "python",
      "args": ["-m", "ascii_banner_mcp.server"]
    }
  }
}

If you use a virtualenv, use the full path to that Python:

{
  "mcpServers": {
    "ascii-banner": {
      "command": "/path/to/venv/bin/python",
      "args": ["-m", "ascii_banner_mcp.server"]
    }
  }
}

Tools

Tool Description
get_fonts Returns a list of available font names. Use this to discover fonts for generate_banner.
generate_banner Renders text as ASCII art. Parameters: text (required), font (optional, default "standard"). Use fonts from get_fonts() (e.g. "slant", "block", "big").

Example (equivalent to your snippet):

from pyfiglet import figlet_format
print(figlet_format("Hello", font="slant"))

Via this MCP server: call generate_banner with text="Hello" and font="slant".

MCP Inspector

Use MCP Inspector to test and debug the server.

Option 1 — stdio (local process)

  1. Run the Inspector: npx @modelcontextprotocol/inspector
  2. In the UI, add a server with Stdio transport.
  3. Set Command to python (or full path to your Python/venv).
  4. Set Args to -m, ascii_banner_mcp.server.
  5. Ensure the project is installed (pip install -e .) or set cwd to the project root and use python -m ascii_banner_mcp.server.

Option 2 — streamable-http (Docker or local)

  1. Start the server over HTTP:
    • Docker: docker compose -f .docker/docker-compose.yml up --build (see Docker below).
    • Local: MCP_TRANSPORT=streamable-http python -m ascii_banner_mcp.server (serves at http://127.0.0.1:8000/mcp).
  2. Run the Inspector: npx @modelcontextprotocol/inspector
  3. Add a server with Streamable HTTP (or URL) and set the URL to http://localhost:8000/mcp.

Custom ports (Inspector): CLIENT_PORT=8080 SERVER_PORT=9000 npx @modelcontextprotocol/inspector

Docker

Run the MCP server in a container. Use the .docker/ setup:

stdio (default) — client runs the container and talks via stdin/stdout:

docker build -f .docker/Dockerfile -t ascii-banner-mcp .
docker run -i --rm ascii-banner-mcp

streamable-http (for Inspector or URL-based clients):

docker compose -f .docker/docker-compose.yml up --build

Server is at http://localhost:8000/mcp. Use config/mcp-config-streamable-http.example.json or point MCP Inspector at that URL.

Development

  • Tests: pytest
  • Lint: ruff check src tests
  • Format: black src tests
  • Pre-commit: Black, Ruff, and conventional-commit message checks (e.g. feat:, fix:). Install: pip install -e ".[dev]" then pre-commit install and pre-commit install --hook-type commit-msg. Run manually: pre-commit run --all-files.

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured