Article Quadrant Analyzer MCP Server
Extracts content from articles, URLs, and images (via OCR), then generates intelligent 2x2 quadrant analysis visualizations in Chinese with direct ASCII matrix output for analyzing work processes, collaboration patterns, and content strategy.
README
๐ Article Quadrant Analyzer MCP Server (Enhanced + OCR)
A powerful Model Context Protocol (MCP) server that extracts core insights from articles with OCR support and generates intelligent Chinese quadrant analysis with direct text matrix visualization.
โจ Features
- Multi-Source Content Processing: URLs, files, screenshots (OCR), and direct text
- Professional OCR: Integration with Mistral Document AI API for high-accuracy screenshot analysis
- 4 Powerful Tools: Content extraction, OCR processing, insights analysis, quadrant generation
- Chinese Text Matrix Output: Direct ASCII quadrant visualization in dialogue
- 2x2 Quadrant Analysis: Automatic generation of insightful quadrant visualizations
- Agent-Centric Design: Optimized for AI agent workflows
- UVX Deployment: Zero-dependency deployment for minimal cost
๐ Quick Start
1. Fast Deployment (5 minutes)
# Deploy to Cursor
./deploy_to_ide_standard.sh cursor
# Deploy to VS Code
./deploy_to_ide_standard.sh vscode
# Deploy to Claude Desktop
./deploy_to_ide_standard.sh claude
# Validate deployment
./deploy_to_ide_standard.sh validate
2. Manual Setup
# Install dependencies
uvx --quiet --python 3.12 --with fastmcp python test_simple_server.py
# Start MCP Inspector for testing
fastmcp dev test_simple_server.py
๐ Project Structure
mcp-server-article-quadrant/
โโโ test_simple_server.py # Main MCP server (3 tools)
โโโ deploy_to_ide_standard.sh # Automated deployment script
โโโ config/ # IDE configurations
โ โโโ config_cursor_standard.json
โ โโโ config_vscode_standard.json
โ โโโ config_claude_desktop_standard.json
โ โโโ config_emacs.el
โ โโโ config_neovim.lua
โโโ src/mcp_server_article_quadrant/ # Modular source code
โ โโโ server.py # FastMCP server setup
โ โโโ tools/ # MCP tools
โ โ โโโ extract_content.py
โ โ โโโ analyze_insights.py
โ โ โโโ generate_quadrant.py
โ โโโ models/ # Pydantic models
โ โ โโโ content.py
โ โ โโโ analysis.py
โ โ โโโ quadrant.py
โ โโโ utils/ # Utilities
โ โโโ content_extractor.py
โ โโโ quadrant_generator.py
โ โโโ image_processor.py
โโโ .trae/specs/article-quadrant-analyzer/ # Technical specifications
โ โโโ spec.md (24KB) # Complete MCP server specification
โ โโโ api-research.md (25KB) # API research and content sources
โโโ pyproject.toml # Project configuration
โโโ .env.example # Environment variables template
โโโ 2X2ๅๆprompt.md # Original analysis prompt
โโโ DOCUMENTATION_SUMMARY.md # Documentation cleanup summary
๐ง Configuration
Environment Variables
# Mistral Document AI API (for OCR)
MISTRAL_API_KEY=your_api_key_here
# Content Processing
CONTENT_MAX_LENGTH=50000
OCR_MAX_FILE_SIZE=10485760
IDE Configuration Examples
Cursor:
{
"mcpServers": {
"article-quadrant-analyzer": {
"command": "uvx",
"args": [
"--quiet", "--python", "3.12", "--with", "fastmcp",
"python", "/Users/vincent/Library/CloudStorage/SynologyDrive-vincent/My.create/Developer/MCP/test_simple_server.py"
]
}
}
}
More configuration examples in config/ directory.
๐ ๏ธ MCP Tools
1. extract_article_content_simple
Enhanced content extraction with AI-friendly interface
Intelligent Processing:
- Automatic HTML/XML tag removal
- Language detection (Chinese/English/Mixed)
- Content quality analysis
- URL and format detection
- Comprehensive metrics (characters, words, sentences, paragraphs)
Universal Input Support:
- URLs (news websites, WeChat public accounts)
- Text files and documents
- Direct text input
- OCR processed content
- Mixed-format content
Smart Output:
- Content preview with truncation
- Complexity assessment
- Processing recommendations
- Next-step guidance
2. analyze_article_insights_simple
Advanced content insights extraction
Keyword Analysis:
- Frequency-based keyword extraction
- Topic identification and clustering
- Content summarization
- Trend detection
Intelligence Features:
- Automatic topic categorization
- Insight relevance scoring
- Content structure analysis
- Actionable insight generation
3. extract_text_from_image
Professional OCR with Mistral Document AI API
Advanced OCR Processing:
- High-accuracy text extraction from images and screenshots
- Support for multiple image formats (PNG, JPG, WEBP)
- Automatic language detection (Chinese/English/Mixed)
- Mistral Document AI API integration for best results
Smart Error Handling:
- Graceful fallback when API key not configured
- Detailed error messages and troubleshooting guidance
- Image validation and preprocessing
- Network timeout and retry logic
Input/Output Support:
- File paths to local images
- Base64 encoded image data
- Real-time confidence scoring
- Extracted text ready for quadrant analysis
4. generate_quadrant_analysis_simple
Enhanced Chinese quadrant analysis engine
Smart Content Processing:
- Intelligent Chinese language detection and analysis
- Context-aware content preprocessing
- Flexible axis labeling (supports Chinese labels)
- Robust error handling and parameter validation
Advanced Classification Logic:
- Collaboration Analysis: Detects team work, coordination, and group activities
- Textual Analysis: Identifies documentation, writing, and formal communication
- Pattern Recognition: Maps content to appropriate quadrants based on actual text patterns
- Chinese Context Support: Specifically trained for Chinese business and work scenarios
Direct Matrix Output:
- Real-time ASCII Visualization: Matrix appears directly in dialogue
- Chinese Quadrant Names: ้็นๆๅ ฅๅบ, ไธไธๅๆๅบ, ๅบ็ก็ปดๆคๅบ, ๅๆๅไฝๅบ
- Content-Specific Mapping: Analyzes your actual content for accurate placement
- No Conversion Needed: Instant results without SVG/PNG conversion steps
Rich Output Format:
- Professional quadrant mapping
- Detailed content metrics
- Strategic insights and recommendations
- Direct text matrix visualization (Chinese)
- Smart content classification based on actual text analysis
AI-Friendly Features:
- Automatic XML/HTML tag cleanup
- Flexible parameter format support
- Comprehensive error handling
- Context-aware response generation
- Chinese language support with intelligent content analysis
๐จ Enhanced Visualization Capabilities:
- Intelligent Text Matrix: Direct ASCII quadrant display in dialogue
- Chinese Content Analysis: Smart classification based on collaboration vs text levels
- Context-Aware Mapping: Analyzes content patterns for accurate quadrant placement
- Real-time Results: No SVG conversion needed - matrix appears immediately
- Dynamic Naming: Quadrants named in Chinese (้็นๆๅ ฅๅบ, ไธไธๅๆๅบ, ๅบ็ก็ปดๆคๅบ, ๅๆๅไฝๅบ)
๐ Supported Content Sources
- News Websites: Major news platforms and online publications
- WeChat Public Accounts: Articles from WeChat official accounts
- Screenshots: OCR processing via Mistral Document AI API
- Text Files: Direct file content extraction
- Direct Input: Manual text entry for analysis
๐ฏ Use Cases
- Work Process Analysis: Analyze team collaboration workflows and documentation patterns
- Project Management: Visualize task distribution and work flow efficiency
- Team Coordination: Identify collaboration bottlenecks and optimization opportunities
- Content Strategy: Map content types across collaboration and formality dimensions
- Decision Making: Framework for resource allocation and task prioritization
๐ Sample Output
Input:
ๅทฅไฝ็ๆตๅจๆง: ๆฒกๆไปปไฝไธไธชๅฒไฝๅชๅญๅจไบไธไธช่ฑก้...
ไพๅฆๅผๅๆฐๅ่ฝ: ๅข้ๅคด่้ฃๆด๏ผๆฐๅPRDๆๆกฃ๏ผๅทฅ็จๅธ็ฌ็ซ็ผๅไปฃ็ ...
Direct Matrix Output:
๐ฏ ๅ่ฑก้็ฉ้ตๅพ
โ ๆๆฌๅ็จๅบฆ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Q1: ้็นๆๅ
ฅๅบ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ โข ๅข้ๅไฝๆๆกฃ โ โ
โ โ โข ้ไฝ่ฎจ่ฎบ่ฎฐๅฝ โ โ
โ โ โข ๅ
ฑไบซๆๆๅฑ็คบ โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Q2: ไธไธๅๆๅบ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ โข ็ฌ็ซๆทฑๅบฆๆ่ โ โ
โ โ โข ไธชไบบไธไธๅๆ โ โ
โ โ โข ๆ ธๅฟๆๆฏๅฎ็ฐ โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ๅไฝ็จๅบฆ โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ ๅไฝ็จๅบฆ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Q3: ๅบ็ก็ปดๆคๅบ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ โข ๅบ็ก็ปดๆคๅทฅไฝ โ โ
โ โ โข ๅธธ่งๆไฝๆต็จ โ โ
โ โ โข ๆ ๅ่ง่ๆง่ก โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Q4: ๅๆๅไฝๅบ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ โข ๅๆๅคด่้ฃๆด โ โ
โ โ โข ่ง่งๅ่กจ่พพ โ โ
โ โ โข ไบๅจๅไฝๅฑ็คบ โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ Testing & Validation
# Test MCP Inspector
fastmcp dev test_simple_server.py
# Opens: http://127.0.0.1:6274
# Validate UVX deployment
./deploy_to_ide_standard.sh validate
# Test individual tools via MCP Inspector interface
๐ Documentation
- Technical Specification - Complete MCP server design (24KB)
- API Research - Content source analysis (25KB)
- Documentation Summary - Project organization and cleanup history
โก Performance
- Startup Time: <2 seconds with UVX
- Memory Usage: ~50MB baseline
- Processing: 1-5 seconds for typical articles
- OCR Processing: 3-10 seconds via Mistral API
๐จ Generated Output Examples
The server generates professional quadrant analyses in SVG format showing:
- Strategic Positioning: Content mapped across two axes
- Visual Clarity: Clean, professional quadrants with labels
- Actionable Insights: Recommendations based on positioning
- Contextual Analysis: Tailored to content type and goals
๐ Ready to transform your article analysis workflow!
Generated with FastMCP Spec-Driven Development Guide
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.