Article Quadrant Analyzer MCP Server

Article Quadrant Analyzer MCP Server

Extracts content from articles, URLs, and images (via OCR), then generates intelligent 2x2 quadrant analysis visualizations in Chinese with direct ASCII matrix output for analyzing work processes, collaboration patterns, and content strategy.

Category
Visit Server

README

๐Ÿ“Š Article Quadrant Analyzer MCP Server (Enhanced + OCR)

A powerful Model Context Protocol (MCP) server that extracts core insights from articles with OCR support and generates intelligent Chinese quadrant analysis with direct text matrix visualization.

โœจ Features

  • Multi-Source Content Processing: URLs, files, screenshots (OCR), and direct text
  • Professional OCR: Integration with Mistral Document AI API for high-accuracy screenshot analysis
  • 4 Powerful Tools: Content extraction, OCR processing, insights analysis, quadrant generation
  • Chinese Text Matrix Output: Direct ASCII quadrant visualization in dialogue
  • 2x2 Quadrant Analysis: Automatic generation of insightful quadrant visualizations
  • Agent-Centric Design: Optimized for AI agent workflows
  • UVX Deployment: Zero-dependency deployment for minimal cost

๐Ÿš€ Quick Start

1. Fast Deployment (5 minutes)

# Deploy to Cursor
./deploy_to_ide_standard.sh cursor

# Deploy to VS Code
./deploy_to_ide_standard.sh vscode

# Deploy to Claude Desktop
./deploy_to_ide_standard.sh claude

# Validate deployment
./deploy_to_ide_standard.sh validate

2. Manual Setup

# Install dependencies
uvx --quiet --python 3.12 --with fastmcp python test_simple_server.py

# Start MCP Inspector for testing
fastmcp dev test_simple_server.py

๐Ÿ“ Project Structure

mcp-server-article-quadrant/
โ”œโ”€โ”€ test_simple_server.py              # Main MCP server (3 tools)
โ”œโ”€โ”€ deploy_to_ide_standard.sh          # Automated deployment script
โ”œโ”€โ”€ config/                            # IDE configurations
โ”‚   โ”œโ”€โ”€ config_cursor_standard.json
โ”‚   โ”œโ”€โ”€ config_vscode_standard.json
โ”‚   โ”œโ”€โ”€ config_claude_desktop_standard.json
โ”‚   โ”œโ”€โ”€ config_emacs.el
โ”‚   โ””โ”€โ”€ config_neovim.lua
โ”œโ”€โ”€ src/mcp_server_article_quadrant/   # Modular source code
โ”‚   โ”œโ”€โ”€ server.py                      # FastMCP server setup
โ”‚   โ”œโ”€โ”€ tools/                         # MCP tools
โ”‚   โ”‚   โ”œโ”€โ”€ extract_content.py
โ”‚   โ”‚   โ”œโ”€โ”€ analyze_insights.py
โ”‚   โ”‚   โ””โ”€โ”€ generate_quadrant.py
โ”‚   โ”œโ”€โ”€ models/                        # Pydantic models
โ”‚   โ”‚   โ”œโ”€โ”€ content.py
โ”‚   โ”‚   โ”œโ”€โ”€ analysis.py
โ”‚   โ”‚   โ””โ”€โ”€ quadrant.py
โ”‚   โ””โ”€โ”€ utils/                         # Utilities
โ”‚       โ”œโ”€โ”€ content_extractor.py
โ”‚       โ”œโ”€โ”€ quadrant_generator.py
โ”‚       โ””โ”€โ”€ image_processor.py
โ”œโ”€โ”€ .trae/specs/article-quadrant-analyzer/  # Technical specifications
โ”‚   โ”œโ”€โ”€ spec.md (24KB)                 # Complete MCP server specification
โ”‚   โ””โ”€โ”€ api-research.md (25KB)         # API research and content sources
โ”œโ”€โ”€ pyproject.toml                     # Project configuration
โ”œโ”€โ”€ .env.example                       # Environment variables template
โ”œโ”€โ”€ 2X2ๅˆ†ๆžprompt.md                   # Original analysis prompt
โ””โ”€โ”€ DOCUMENTATION_SUMMARY.md           # Documentation cleanup summary

๐Ÿ”ง Configuration

Environment Variables

# Mistral Document AI API (for OCR)
MISTRAL_API_KEY=your_api_key_here

# Content Processing
CONTENT_MAX_LENGTH=50000
OCR_MAX_FILE_SIZE=10485760

IDE Configuration Examples

Cursor:

{
  "mcpServers": {
    "article-quadrant-analyzer": {
      "command": "uvx",
      "args": [
        "--quiet", "--python", "3.12", "--with", "fastmcp",
        "python", "/Users/vincent/Library/CloudStorage/SynologyDrive-vincent/My.create/Developer/MCP/test_simple_server.py"
      ]
    }
  }
}

More configuration examples in config/ directory.

๐Ÿ› ๏ธ MCP Tools

1. extract_article_content_simple

Enhanced content extraction with AI-friendly interface

Intelligent Processing:

  • Automatic HTML/XML tag removal
  • Language detection (Chinese/English/Mixed)
  • Content quality analysis
  • URL and format detection
  • Comprehensive metrics (characters, words, sentences, paragraphs)

Universal Input Support:

  • URLs (news websites, WeChat public accounts)
  • Text files and documents
  • Direct text input
  • OCR processed content
  • Mixed-format content

Smart Output:

  • Content preview with truncation
  • Complexity assessment
  • Processing recommendations
  • Next-step guidance

2. analyze_article_insights_simple

Advanced content insights extraction

Keyword Analysis:

  • Frequency-based keyword extraction
  • Topic identification and clustering
  • Content summarization
  • Trend detection

Intelligence Features:

  • Automatic topic categorization
  • Insight relevance scoring
  • Content structure analysis
  • Actionable insight generation

3. extract_text_from_image

Professional OCR with Mistral Document AI API

Advanced OCR Processing:

  • High-accuracy text extraction from images and screenshots
  • Support for multiple image formats (PNG, JPG, WEBP)
  • Automatic language detection (Chinese/English/Mixed)
  • Mistral Document AI API integration for best results

Smart Error Handling:

  • Graceful fallback when API key not configured
  • Detailed error messages and troubleshooting guidance
  • Image validation and preprocessing
  • Network timeout and retry logic

Input/Output Support:

  • File paths to local images
  • Base64 encoded image data
  • Real-time confidence scoring
  • Extracted text ready for quadrant analysis

4. generate_quadrant_analysis_simple

Enhanced Chinese quadrant analysis engine

Smart Content Processing:

  • Intelligent Chinese language detection and analysis
  • Context-aware content preprocessing
  • Flexible axis labeling (supports Chinese labels)
  • Robust error handling and parameter validation

Advanced Classification Logic:

  • Collaboration Analysis: Detects team work, coordination, and group activities
  • Textual Analysis: Identifies documentation, writing, and formal communication
  • Pattern Recognition: Maps content to appropriate quadrants based on actual text patterns
  • Chinese Context Support: Specifically trained for Chinese business and work scenarios

Direct Matrix Output:

  • Real-time ASCII Visualization: Matrix appears directly in dialogue
  • Chinese Quadrant Names: ้‡็‚นๆŠ•ๅ…ฅๅŒบ, ไธ“ไธšๅˆ†ๆžๅŒบ, ๅŸบ็ก€็ปดๆŠคๅŒบ, ๅˆ›ๆ„ๅไฝœๅŒบ
  • Content-Specific Mapping: Analyzes your actual content for accurate placement
  • No Conversion Needed: Instant results without SVG/PNG conversion steps

Rich Output Format:

  • Professional quadrant mapping
  • Detailed content metrics
  • Strategic insights and recommendations
  • Direct text matrix visualization (Chinese)
  • Smart content classification based on actual text analysis

AI-Friendly Features:

  • Automatic XML/HTML tag cleanup
  • Flexible parameter format support
  • Comprehensive error handling
  • Context-aware response generation
  • Chinese language support with intelligent content analysis

๐ŸŽจ Enhanced Visualization Capabilities:

  • Intelligent Text Matrix: Direct ASCII quadrant display in dialogue
  • Chinese Content Analysis: Smart classification based on collaboration vs text levels
  • Context-Aware Mapping: Analyzes content patterns for accurate quadrant placement
  • Real-time Results: No SVG conversion needed - matrix appears immediately
  • Dynamic Naming: Quadrants named in Chinese (้‡็‚นๆŠ•ๅ…ฅๅŒบ, ไธ“ไธšๅˆ†ๆžๅŒบ, ๅŸบ็ก€็ปดๆŠคๅŒบ, ๅˆ›ๆ„ๅไฝœๅŒบ)

๐Ÿ“‹ Supported Content Sources

  • News Websites: Major news platforms and online publications
  • WeChat Public Accounts: Articles from WeChat official accounts
  • Screenshots: OCR processing via Mistral Document AI API
  • Text Files: Direct file content extraction
  • Direct Input: Manual text entry for analysis

๐ŸŽฏ Use Cases

  • Work Process Analysis: Analyze team collaboration workflows and documentation patterns
  • Project Management: Visualize task distribution and work flow efficiency
  • Team Coordination: Identify collaboration bottlenecks and optimization opportunities
  • Content Strategy: Map content types across collaboration and formality dimensions
  • Decision Making: Framework for resource allocation and task prioritization

๐Ÿ“Š Sample Output

Input:

ๅทฅไฝœ็š„ๆตๅŠจๆ€ง: ๆฒกๆœ‰ไปปไฝ•ไธ€ไธชๅฒ—ไฝๅชๅญ˜ๅœจไบŽไธ€ไธช่ฑก้™...
ไพ‹ๅฆ‚ๅผ€ๅ‘ๆ–ฐๅŠŸ่ƒฝ: ๅ›ข้˜Ÿๅคด่„‘้ฃŽๆšด๏ผŒๆ’ฐๅ†™PRDๆ–‡ๆกฃ๏ผŒๅทฅ็จ‹ๅธˆ็‹ฌ็ซ‹็ผ–ๅ†™ไปฃ็ ...

Direct Matrix Output:

๐ŸŽฏ ๅ››่ฑก้™็Ÿฉ้˜ตๅ›พ

                    โ†‘ ๆ–‡ๆœฌๅŒ–็จ‹ๅบฆ โ†‘
                    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                    โ”‚     Q1: ้‡็‚นๆŠ•ๅ…ฅๅŒบ     โ”‚
                    โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚
                    โ”‚  โ”‚ โ€ข ๅ›ข้˜Ÿๅไฝœๆ–‡ๆกฃ      โ”‚  โ”‚
                    โ”‚  โ”‚ โ€ข ้›†ไฝ“่ฎจ่ฎบ่ฎฐๅฝ•      โ”‚  โ”‚
                    โ”‚  โ”‚ โ€ข ๅ…ฑไบซๆˆๆžœๅฑ•็คบ      โ”‚  โ”‚
                    โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚
                    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                    โ”‚     Q2: ไธ“ไธšๅˆ†ๆžๅŒบ     โ”‚
                    โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚
                    โ”‚  โ”‚ โ€ข ็‹ฌ็ซ‹ๆทฑๅบฆๆ€่€ƒ      โ”‚  โ”‚
                    โ”‚  โ”‚ โ€ข ไธชไบบไธ“ไธšๅˆ†ๆž      โ”‚  โ”‚
                    โ”‚  โ”‚ โ€ข ๆ ธๅฟƒๆŠ€ๆœฏๅฎž็Žฐ      โ”‚  โ”‚
                    โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚
                    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ† ๅไฝœ็จ‹ๅบฆ โ† โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ†’ ๅไฝœ็จ‹ๅบฆ โ†’
                    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                    โ”‚     Q3: ๅŸบ็ก€็ปดๆŠคๅŒบ     โ”‚
                    โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚
                    โ”‚  โ”‚ โ€ข ๅŸบ็ก€็ปดๆŠคๅทฅไฝœ      โ”‚  โ”‚
                    โ”‚  โ”‚ โ€ข ๅธธ่ง„ๆ“ไฝœๆต็จ‹      โ”‚  โ”‚
                    โ”‚  โ”‚ โ€ข ๆ ‡ๅ‡†่ง„่Œƒๆ‰ง่กŒ      โ”‚  โ”‚
                    โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚
                    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                    โ”‚     Q4: ๅˆ›ๆ„ๅไฝœๅŒบ     โ”‚
                    โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚
                    โ”‚  โ”‚ โ€ข ๅˆ›ๆ„ๅคด่„‘้ฃŽๆšด      โ”‚  โ”‚
                    โ”‚  โ”‚ โ€ข ่ง†่ง‰ๅŒ–่กจ่พพ        โ”‚  โ”‚
                    โ”‚  โ”‚ โ€ข ไบ’ๅŠจๅไฝœๅฑ•็คบ      โ”‚  โ”‚
                    โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚
                    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿ” Testing & Validation

# Test MCP Inspector
fastmcp dev test_simple_server.py
# Opens: http://127.0.0.1:6274

# Validate UVX deployment
./deploy_to_ide_standard.sh validate

# Test individual tools via MCP Inspector interface

๐Ÿ“š Documentation

โšก Performance

  • Startup Time: <2 seconds with UVX
  • Memory Usage: ~50MB baseline
  • Processing: 1-5 seconds for typical articles
  • OCR Processing: 3-10 seconds via Mistral API

๐ŸŽจ Generated Output Examples

The server generates professional quadrant analyses in SVG format showing:

  • Strategic Positioning: Content mapped across two axes
  • Visual Clarity: Clean, professional quadrants with labels
  • Actionable Insights: Recommendations based on positioning
  • Contextual Analysis: Tailored to content type and goals

๐Ÿš€ Ready to transform your article analysis workflow!

Generated with FastMCP Spec-Driven Development Guide

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured