APIWeaver
Dynamically converts any REST API into MCP tools by registering web API configurations at runtime. Supports multiple authentication methods and automatically generates MCP-compatible tools for AI assistants to interact with external web services.
README
APIWeaver
A FastMCP server that dynamically creates MCP (Model Context Protocol) servers from web API configurations. This allows you to easily integrate any REST API, GraphQL endpoint, or web service into an MCP-compatible tool that can be used by AI assistants like Claude.
Features
- ๐ Dynamic API Registration: Register any web API at runtime
- ๐ Multiple Authentication Methods: Bearer tokens, API keys, Basic auth, OAuth2, and custom headers
- ๐ ๏ธ All HTTP Methods: Support for GET, POST, PUT, DELETE, PATCH, and more
- ๐ Flexible Parameters: Query params, path params, headers, and request bodies
- ๐ Automatic Tool Generation: Each API endpoint becomes an MCP tool
- ๐งช Built-in Testing: Test API connections before using them
- ๐ Response Handling: Automatic JSON parsing with fallback to text
- ๐ Multiple Transport Types: STDIO, SSE, and Streamable HTTP transport support
Transport Types
APIWeaver supports three different transport types to accommodate various deployment scenarios:
STDIO Transport (Default)
- Usage:
apiweaver runorapiweaver run --transport stdio - Best for: Local tools, command-line usage, and MCP clients that connect via standard input/output
- Characteristics: Direct process communication, lowest latency, suitable for desktop applications
- Endpoint: N/A (uses stdin/stdout)
SSE Transport (Legacy)
- Usage:
apiweaver run --transport sse --host 127.0.0.1 --port 8000 - Best for: Legacy MCP clients that only support Server-Sent Events
- Characteristics: HTTP-based, one-way streaming from server to client
- Endpoint:
http://host:port/mcp - Note: This transport is deprecated in favor of Streamable HTTP
Streamable HTTP Transport (Recommended)
- Usage:
apiweaver run --transport streamable-http --host 127.0.0.1 --port 8000 - Best for: Modern web deployments, cloud environments, and new MCP clients
- Characteristics: Full HTTP-based communication, bidirectional streaming, better error handling
- Endpoint:
http://host:port/mcp - Recommended: This is the preferred transport for new deployments
Installation
# Clone or download this repository
cd ~/Desktop/APIWeaver
# Install dependencies
pip install -r requirements.txt
Usage
Claude Desktop
{
"mcpServers": {
"apiweaver": {
"command": "uvx",
"args": ["apiweaver", "run"]
}
}
}
Starting the Server
There are several ways to run the APIWeaver server with different transport types:
1. After installation (recommended):
If you have installed the package (e.g., using pip install . from the project root after installing requirements):
# Default STDIO transport
apiweaver run
# Streamable HTTP transport (recommended for web deployments)
apiweaver run --transport streamable-http --host 127.0.0.1 --port 8000
# SSE transport (legacy compatibility)
apiweaver run --transport sse --host 127.0.0.1 --port 8000
2. Directly from the repository (for development):
# From the root of the repository
python -m apiweaver.cli run [OPTIONS]
Transport Options:
--transport: Choose fromstdio(default),sse, orstreamable-http--host: Host address for HTTP transports (default: 127.0.0.1)--port: Port for HTTP transports (default: 8000)--path: URL path for MCP endpoint (default: /mcp)
Run apiweaver run --help for all available options.
Using with AI Assistants (like Claude Desktop)
APIWeaver is designed to expose web APIs as tools for AI assistants that support the Model Context Protocol (MCP). Here's how to use it:
-
Start the APIWeaver Server:
For modern MCP clients (recommended):
apiweaver run --transport streamable-http --host 127.0.0.1 --port 8000For legacy compatibility:
apiweaver run --transport sse --host 127.0.0.1 --port 8000For local desktop applications:
apiweaver run # Uses STDIO transport -
Configure Your AI Assistant: The MCP endpoint will be available at:
- Streamable HTTP:
http://127.0.0.1:8000/mcp - SSE:
http://127.0.0.1:8000/mcp - STDIO: Direct process communication
- Streamable HTTP:
-
Register APIs and Use Tools: Once connected, use the built-in
register_apitool to define web APIs, then use the generated endpoint tools.
Core Tools
The server provides these built-in tools:
- register_api - Register a new API and create tools for its endpoints
- list_apis - List all registered APIs and their endpoints
- unregister_api - Remove an API and its tools
- test_api_connection - Test connectivity to a registered API
- call_api - Generic tool to call any registered API endpoint
- get_api_schema - Get schema information for APIs and endpoints
API Configuration Format
{
"name": "my_api",
"base_url": "https://api.example.com",
"description": "Example API integration",
"auth": {
"type": "bearer",
"bearer_token": "your-token-here"
},
"headers": {
"Accept": "application/json"
},
"endpoints": [
{
"name": "list_users",
"description": "Get all users",
"method": "GET",
"path": "/users",
"params": [
{
"name": "limit",
"type": "integer",
"location": "query",
"required": false,
"default": 10,
"description": "Number of users to return"
}
]
}
]
}
Examples
Example 1: OpenWeatherMap API
{
"name": "weather",
"base_url": "https://api.openweathermap.org/data/2.5",
"description": "OpenWeatherMap API",
"auth": {
"type": "api_key",
"api_key": "your-api-key",
"api_key_param": "appid"
},
"endpoints": [
{
"name": "get_current_weather",
"description": "Get current weather for a city",
"method": "GET",
"path": "/weather",
"params": [
{
"name": "q",
"type": "string",
"location": "query",
"required": true,
"description": "City name"
},
{
"name": "units",
"type": "string",
"location": "query",
"required": false,
"default": "metric",
"enum": ["metric", "imperial", "kelvin"]
}
]
}
]
}
Example 2: GitHub API
{
"name": "github",
"base_url": "https://api.github.com",
"description": "GitHub REST API",
"auth": {
"type": "bearer",
"bearer_token": "ghp_your_token_here"
},
"headers": {
"Accept": "application/vnd.github.v3+json"
},
"endpoints": [
{
"name": "get_user",
"description": "Get a GitHub user's information",
"method": "GET",
"path": "/users/{username}",
"params": [
{
"name": "username",
"type": "string",
"location": "path",
"required": true,
"description": "GitHub username"
}
]
}
]
}
Authentication Types
Bearer Token
{
"auth": {
"type": "bearer",
"bearer_token": "your-token-here"
}
}
API Key (Header)
{
"auth": {
"type": "api_key",
"api_key": "your-key-here",
"api_key_header": "X-API-Key"
}
}
API Key (Query Parameter)
{
"auth": {
"type": "api_key",
"api_key": "your-key-here",
"api_key_param": "api_key"
}
}
Basic Authentication
{
"auth": {
"type": "basic",
"username": "your-username",
"password": "your-password"
}
}
Custom Headers
{
"auth": {
"type": "custom",
"custom_headers": {
"X-Custom-Auth": "custom-value",
"X-Client-ID": "client-123"
}
}
}
Parameter Locations
- query: Query string parameters (
?param=value) - path: Path parameters (
/users/{id}) - header: HTTP headers
- body: Request body (for POST, PUT, PATCH)
Parameter Types
- string: Text values
- integer: Whole numbers
- number: Decimal numbers
- boolean: true/false
- array: Lists of values
- object: JSON objects
Advanced Features
Custom Timeouts
{
"timeout": 60.0 // Timeout in seconds
}
Enum Values
{
"name": "status",
"type": "string",
"enum": ["active", "inactive", "pending"]
}
Default Values
{
"name": "page",
"type": "integer",
"default": 1
}
Claude Desktop Configuration
For Streamable HTTP Transport (Recommended)
{
"mcpServers": {
"apiweaver": {
"command": "apiweaver",
"args": ["run", "--transport", "streamable-http", "--host", "127.0.0.1", "--port", "8000"]
}
}
}
For STDIO Transport (Traditional)
{
"mcpServers": {
"apiweaver": {
"command": "apiweaver",
"args": ["run"]
}
}
}
Error Handling
The server provides detailed error messages for:
- Missing required parameters
- HTTP errors (with status codes)
- Connection failures
- Authentication errors
- Invalid configurations
Tips
- Choose the Right Transport: Use
streamable-httpfor modern deployments,stdiofor local tools - Test First: Always use
test_api_connectionafter registering an API - Start Simple: Begin with GET endpoints before moving to complex POST requests
- Check Auth: Ensure your authentication credentials are correct
- Use Descriptions: Provide clear descriptions for better AI understanding
- Handle Errors: The server will report HTTP errors with details
Troubleshooting
Common Issues
- 401 Unauthorized: Check your authentication credentials
- 404 Not Found: Verify the base URL and endpoint paths
- Timeout Errors: Increase the timeout value for slow APIs
- SSL Errors: Some APIs may require specific SSL configurations
Debug Mode
Run with verbose logging (if installed):
apiweaver run --verbose
Transport-Specific Issues
- STDIO: Ensure the client properly handles stdin/stdout communication
- SSE: Check that the HTTP endpoint is accessible and CORS is configured
- Streamable HTTP: Verify the MCP endpoint responds to HTTP requests
Contributing
Feel free to extend this server with additional features:
- OAuth2 token refresh
- GraphQL support
- WebSocket endpoints
- Response caching
- Rate limiting
- Request retries
License
MIT License - feel free to use and modify as needed.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.