APIWeaver

APIWeaver

Dynamically converts any REST API into MCP tools by registering web API configurations at runtime. Supports multiple authentication methods and automatically generates MCP-compatible tools for AI assistants to interact with external web services.

Category
Visit Server

README

APIWeaver

A FastMCP server that dynamically creates MCP (Model Context Protocol) servers from web API configurations. This allows you to easily integrate any REST API, GraphQL endpoint, or web service into an MCP-compatible tool that can be used by AI assistants like Claude.

Features

  • ๐Ÿš€ Dynamic API Registration: Register any web API at runtime
  • ๐Ÿ” Multiple Authentication Methods: Bearer tokens, API keys, Basic auth, OAuth2, and custom headers
  • ๐Ÿ› ๏ธ All HTTP Methods: Support for GET, POST, PUT, DELETE, PATCH, and more
  • ๐Ÿ“ Flexible Parameters: Query params, path params, headers, and request bodies
  • ๐Ÿ”„ Automatic Tool Generation: Each API endpoint becomes an MCP tool
  • ๐Ÿงช Built-in Testing: Test API connections before using them
  • ๐Ÿ“Š Response Handling: Automatic JSON parsing with fallback to text
  • ๐ŸŒ Multiple Transport Types: STDIO, SSE, and Streamable HTTP transport support

Transport Types

APIWeaver supports three different transport types to accommodate various deployment scenarios:

STDIO Transport (Default)

  • Usage: apiweaver run or apiweaver run --transport stdio
  • Best for: Local tools, command-line usage, and MCP clients that connect via standard input/output
  • Characteristics: Direct process communication, lowest latency, suitable for desktop applications
  • Endpoint: N/A (uses stdin/stdout)

SSE Transport (Legacy)

  • Usage: apiweaver run --transport sse --host 127.0.0.1 --port 8000
  • Best for: Legacy MCP clients that only support Server-Sent Events
  • Characteristics: HTTP-based, one-way streaming from server to client
  • Endpoint: http://host:port/mcp
  • Note: This transport is deprecated in favor of Streamable HTTP

Streamable HTTP Transport (Recommended)

  • Usage: apiweaver run --transport streamable-http --host 127.0.0.1 --port 8000
  • Best for: Modern web deployments, cloud environments, and new MCP clients
  • Characteristics: Full HTTP-based communication, bidirectional streaming, better error handling
  • Endpoint: http://host:port/mcp
  • Recommended: This is the preferred transport for new deployments

Installation

# Clone or download this repository
cd ~/Desktop/APIWeaver

# Install dependencies
pip install -r requirements.txt

Usage

Claude Desktop

{
  "mcpServers": {
    "apiweaver": {
      "command": "uvx",
      "args": ["apiweaver", "run"]
    }
  }
}

Starting the Server

There are several ways to run the APIWeaver server with different transport types:

1. After installation (recommended):

If you have installed the package (e.g., using pip install . from the project root after installing requirements):

# Default STDIO transport
apiweaver run

# Streamable HTTP transport (recommended for web deployments)
apiweaver run --transport streamable-http --host 127.0.0.1 --port 8000

# SSE transport (legacy compatibility)
apiweaver run --transport sse --host 127.0.0.1 --port 8000

2. Directly from the repository (for development):

# From the root of the repository
python -m apiweaver.cli run [OPTIONS]

Transport Options:

  • --transport: Choose from stdio (default), sse, or streamable-http
  • --host: Host address for HTTP transports (default: 127.0.0.1)
  • --port: Port for HTTP transports (default: 8000)
  • --path: URL path for MCP endpoint (default: /mcp)

Run apiweaver run --help for all available options.

Using with AI Assistants (like Claude Desktop)

APIWeaver is designed to expose web APIs as tools for AI assistants that support the Model Context Protocol (MCP). Here's how to use it:

  1. Start the APIWeaver Server:

    For modern MCP clients (recommended):

    apiweaver run --transport streamable-http --host 127.0.0.1 --port 8000
    

    For legacy compatibility:

    apiweaver run --transport sse --host 127.0.0.1 --port 8000
    

    For local desktop applications:

    apiweaver run  # Uses STDIO transport
    
  2. Configure Your AI Assistant: The MCP endpoint will be available at:

    • Streamable HTTP: http://127.0.0.1:8000/mcp
    • SSE: http://127.0.0.1:8000/mcp
    • STDIO: Direct process communication
  3. Register APIs and Use Tools: Once connected, use the built-in register_api tool to define web APIs, then use the generated endpoint tools.

Core Tools

The server provides these built-in tools:

  1. register_api - Register a new API and create tools for its endpoints
  2. list_apis - List all registered APIs and their endpoints
  3. unregister_api - Remove an API and its tools
  4. test_api_connection - Test connectivity to a registered API
  5. call_api - Generic tool to call any registered API endpoint
  6. get_api_schema - Get schema information for APIs and endpoints

API Configuration Format

{
  "name": "my_api",
  "base_url": "https://api.example.com",
  "description": "Example API integration",
  "auth": {
    "type": "bearer",
    "bearer_token": "your-token-here"
  },
  "headers": {
    "Accept": "application/json"
  },
  "endpoints": [
    {
      "name": "list_users",
      "description": "Get all users",
      "method": "GET",
      "path": "/users",
      "params": [
        {
          "name": "limit",
          "type": "integer",
          "location": "query",
          "required": false,
          "default": 10,
          "description": "Number of users to return"
        }
      ]
    }
  ]
}

Examples

Example 1: OpenWeatherMap API

{
  "name": "weather",
  "base_url": "https://api.openweathermap.org/data/2.5",
  "description": "OpenWeatherMap API",
  "auth": {
    "type": "api_key",
    "api_key": "your-api-key",
    "api_key_param": "appid"
  },
  "endpoints": [
    {
      "name": "get_current_weather",
      "description": "Get current weather for a city",
      "method": "GET",
      "path": "/weather",
      "params": [
        {
          "name": "q",
          "type": "string",
          "location": "query",
          "required": true,
          "description": "City name"
        },
        {
          "name": "units",
          "type": "string",
          "location": "query",
          "required": false,
          "default": "metric",
          "enum": ["metric", "imperial", "kelvin"]
        }
      ]
    }
  ]
}

Example 2: GitHub API

{
  "name": "github",
  "base_url": "https://api.github.com",
  "description": "GitHub REST API",
  "auth": {
    "type": "bearer",
    "bearer_token": "ghp_your_token_here"
  },
  "headers": {
    "Accept": "application/vnd.github.v3+json"
  },
  "endpoints": [
    {
      "name": "get_user",
      "description": "Get a GitHub user's information",
      "method": "GET",
      "path": "/users/{username}",
      "params": [
        {
          "name": "username",
          "type": "string",
          "location": "path",
          "required": true,
          "description": "GitHub username"
        }
      ]
    }
  ]
}

Authentication Types

Bearer Token

{
  "auth": {
    "type": "bearer",
    "bearer_token": "your-token-here"
  }
}

API Key (Header)

{
  "auth": {
    "type": "api_key",
    "api_key": "your-key-here",
    "api_key_header": "X-API-Key"
  }
}

API Key (Query Parameter)

{
  "auth": {
    "type": "api_key",
    "api_key": "your-key-here",
    "api_key_param": "api_key"
  }
}

Basic Authentication

{
  "auth": {
    "type": "basic",
    "username": "your-username",
    "password": "your-password"
  }
}

Custom Headers

{
  "auth": {
    "type": "custom",
    "custom_headers": {
      "X-Custom-Auth": "custom-value",
      "X-Client-ID": "client-123"
    }
  }
}

Parameter Locations

  • query: Query string parameters (?param=value)
  • path: Path parameters (/users/{id})
  • header: HTTP headers
  • body: Request body (for POST, PUT, PATCH)

Parameter Types

  • string: Text values
  • integer: Whole numbers
  • number: Decimal numbers
  • boolean: true/false
  • array: Lists of values
  • object: JSON objects

Advanced Features

Custom Timeouts

{
  "timeout": 60.0  // Timeout in seconds
}

Enum Values

{
  "name": "status",
  "type": "string",
  "enum": ["active", "inactive", "pending"]
}

Default Values

{
  "name": "page",
  "type": "integer",
  "default": 1
}

Claude Desktop Configuration

For Streamable HTTP Transport (Recommended)

{
  "mcpServers": {
    "apiweaver": {
      "command": "apiweaver",
      "args": ["run", "--transport", "streamable-http", "--host", "127.0.0.1", "--port", "8000"]
    }
  }
}

For STDIO Transport (Traditional)

{
  "mcpServers": {
    "apiweaver": {
      "command": "apiweaver",
      "args": ["run"]
    }
  }
}

Error Handling

The server provides detailed error messages for:

  • Missing required parameters
  • HTTP errors (with status codes)
  • Connection failures
  • Authentication errors
  • Invalid configurations

Tips

  1. Choose the Right Transport: Use streamable-http for modern deployments, stdio for local tools
  2. Test First: Always use test_api_connection after registering an API
  3. Start Simple: Begin with GET endpoints before moving to complex POST requests
  4. Check Auth: Ensure your authentication credentials are correct
  5. Use Descriptions: Provide clear descriptions for better AI understanding
  6. Handle Errors: The server will report HTTP errors with details

Troubleshooting

Common Issues

  1. 401 Unauthorized: Check your authentication credentials
  2. 404 Not Found: Verify the base URL and endpoint paths
  3. Timeout Errors: Increase the timeout value for slow APIs
  4. SSL Errors: Some APIs may require specific SSL configurations

Debug Mode

Run with verbose logging (if installed):

apiweaver run --verbose

Transport-Specific Issues

  • STDIO: Ensure the client properly handles stdin/stdout communication
  • SSE: Check that the HTTP endpoint is accessible and CORS is configured
  • Streamable HTTP: Verify the MCP endpoint responds to HTTP requests

Contributing

Feel free to extend this server with additional features:

  • OAuth2 token refresh
  • GraphQL support
  • WebSocket endpoints
  • Response caching
  • Rate limiting
  • Request retries

License

MIT License - feel free to use and modify as needed.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured